
ON THE COVER
6 InterBase Stored Procedures — Jerry Coffey
Although the stored procedure is a cornerstone of client/server program-
ming, the InterBase variety is woefully underdocumented — especially
regarding the Delphi connection.

11 InterBase Triggers and Generators — Bill Todd
You can’t write client/server applications without triggers. Okay,
you can; but triggers may be the most powerful tool in a database
server. Learn how they can ease your burden, even in applications of
modest complexity.

15 InterBase Event Alerters — Alexander Le and Donna Burbank
You know the drill: The Delphi client sends commands, and the
database mutely accepts them. But InterBase event alerters reverse this
relationship. Here’s how to create a robust database application with the
ability to talk back.

FEATURES
19 Informant Spotlight
Interfacing with COM — Jim Scammahorn
The Component Object Model (COM) allows objects to be distributed
across multiple programs, or even multiple machines, while still
appearing as a single application. Here’s how to create such a united
front with Delphi 3.

24 First Look
New Visuals — Robert Vivrette
Delphi 3 is a reality, and many are eager to upgrade. For those who
haven’t had a chance to “test drive,” here’s a quick look at the Delphi 3
VCL’s new controls.

28 In Development
Deployment: Part II — Bill Todd
InstallShield Express Professional offers more power and flexibility —
once you iron out the details. This month, Mr Todd describes how to
use extensions to resolve the BDE installation challenges described in
Part I, and more.

32 Delphi at Work
Automated Excel — Ian Davies
There’s incredible potential for manipulating Excel through its OLE
automation interface — and much more complexity than in last month’s
manipulation of Word. Fortunately, Excel and VBA provide the tools for
the job.

36 Columns & Rows
The Paradox Files: Part III — Dan Ehrmann
The “paradox” is inescapable: The file format remains in daily use, yet
suffers from a documentation gap. This article continues the remedy by
examining the role of primary and secondary indexes.

41 DBNavigator
Cached Updates: Part II — Cary Jensen, Ph.D.
Want to offer more user-interface options, such as the ability to restore
“deleted” records, or to edit read-only DataSets? Cached updates could be
just the ticket, as Dr Jensen demonstrates.

REVIEWS
47 STDynArray 1.0

Product Review by Tim Boyd

51 Async Professional for Delphi
Product Review by Alan Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
5 Newsline
56 File | New by Richard Wagner

June 1997, Volume 3, Number 6

InterBase
The RDBMS behind the Curtain

1 June 1997 Delphi Informant

Cover Art By: Tom McKeith

2 June 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

GenoTechs, Inc., a Borland Training
Center, offers hands-on Delphi train-

ing courses in Arizona, Florida,
Tennessee, and Massachusetts. The
courses include: object-oriented and

event-driven programming with
Delphi; introduction to Pascal; build-

ing robust applications using exception
handling; detailed study of compo-
nents; developing an application;

adding standard components to an
application; Delphi data access archi-
tecture; using database components;

using system components, dialog
components, ReportSmith, and

QuickReport; advanced database pro-
gramming topics; linking data sets;

and creating custom components and
Windows DLLs. In addition to sample
exercises, each student ties the con-

cepts together by developing an appli-
cation. Each five-day course is

US$1,440. On-site training, cus-
tomized training, project mentoring,
and consulting are also available.

For details, call (800) GENOTEX or
(602) 438-8647, e-mail

genotex@genotechs.com, or visit
http://www.genotechs.com.

Delphi Training
Potomac Document Software Releases Component Create 2.5

Potomac Document

Software of Washington,
D.C. has released version 2.5
of Component Create for
Delphi, a design tool and
code generator for creating
Delphi VCL components.

Component Create enables
developers to use a point-
and-click interface to select
the parent class for a new
component from an outline
view of the VCL, then
define the properties, meth-
ods, and events of the new
component.

Component Create gener-
ates a detailed code frame-
work, to which the developer
adds only the code needed for
the component’s functional
behavior. An internal code
editor allows developers to
modify the default code;
components can be regen-
erated without losing the
developer’s changes.

Component Create allows
developers to import contain-
er components from .DFM
files; build data-aware com-
ponents with links to multi-
ple fields or data sources; cre-
ate components that wrap
around forms; develop cus-
tom property editors; and
generate palette bitmaps.

Bundled with version 2.5 is
the new version of Thread
Component Toolset, a set of
base classes for creating
thread components.

Developers can use
Component Create and
Thread Component Toolset
to build thread components
for performing tasks in the
background, such as loading
and saving graphics files,
backing up files, transferring
files, or monitoring real-time
processes.

Component Create
editions for Windows 95,
Windows NT, and Windows
3.1 ship in one box.

Price: US$179
Contact: Potomac Document Software,
P.O. Box 33146,
Washington, D.C. 20033
Phone: (800) 628-5524
Fax: (202) 244-9065
E-Mail: dprice@compcreate.com
Web Site: http://www.compcreate.com
teeMach SL Launches New Charting Tool

teeMach SL has released

TeeChart-Pro version 3, a
charting tool for Delphi
developers.

Available in 16- and 32-
bit versions, TeeChart-Pro
includes data-aware charts,
16 pre-defined Series types,
five extended series types, a
developer Custom Series
guide, sta-
tistical and
custom
functions,
custom
printing
and draw-
ing, a run-
time Chart
Editor, and
online
Help, as
well as the
source
code. It also plugs into
TDataModules and inte-
grates with QuickReport
2.0.

Borland selected
TeeChart’s run-time version
as the Delphi VCL charting
tool in Delphi 3 Developer,
Client/Server, and
Enterprise versions.
Price: US$99
Contact: teeMach SL, Gran Via, 533,
08011 Barcelona, Catalonia, Spain
Phone: 34-3-453-48-06
Fax: 34-3-454-29-39
E-Mail: teechart@redestb.es
Web Site: http://www.teemach.com

Delphi
T O O L S

New Products
and Solutions

Para/Matrix Solutions, Inc., a company
specializing in training, consulting, and
developing PC solutions for large and
small businesses, is offering hands-on

training for Delphi.
Getting Started with Delphi

Client/Server Edition is scheduled for
June 16-18, and is priced at

US$1,050. Extending Your Delphi
Applications is scheduled for

June 19-20, and is priced at US$700.
For a July schedule of classes, or for
more information, call Para/Matrix
Solutions, Inc. at (206) 246-4211.

Delphi Training

3 June 1997 Delphi Informant
Nesbitt Software Sells ShareLock for Delphi Online

Nesbitt Software Corp. of

Spokane, WA began online
sales of Kenn Nesbitt’s
ShareLock, a component
that can turn any applica-
tion written in Delphi into a
trial version.

ShareLock lets Delphi pro-
grammers lock their software
after a specified number of
days, executions, or an
absolute date, allowing users
to evaluate the software for a
limited period before pur-
chasing. ShareLock also pro-
vides an optional “grace
period” and special “exten-
sion key codes,” that allow
the program to run for a
specific number of days or
executions beyond the trial
period.

Programmers can choose
to use ShareLock’s built-in
data encryption, key gener-
ation, and dialog boxes, or
may override any of these
features to provide greater
security or customized mes-
sages. ShareLock also
watches for users who may
try to defeat the locking
mechanism by using exten-
sion codes more than once,
changing the date on their
system, etc.

Price: US$39.95
Contact: Nesbitt Software Corp.,
2251 San Diego Ave., Ste. A141,
San Diego, CA 92110
Phone: (619) 220-8601
Fax: (619) 220-8324
E-Mail: support@nesbitt.com
Web Site: http://www.nesbitt.com
Sybase Unveils Powersoft S-Designor Version 6.0

Sybase, Inc. of

Emeryville, CA has
announced Powersoft S-
Designor 6.0, providing
database, data warehouse,
and data-aware component
design and generation for
database designers and
developers.

S-Designor 6.0 contains a
modular toolset with an
integrated set of analysis
and design tools. The six
modules in the S-Designor
family include Data-
Architect, Warehouse-
Architect, ProcessAnalyst,
AppModeler, MetaWorks,
and Viewer.

DataArchitect, the data-
base design and generation
module, adds entity neigh-
bor selection, tool tips,
word wrapping, report pre-
view, and more. It also fea-
tures Mass change capabili-
ty and enhanced relation-
ship options.

WarehouseArchitect
allows designers to reverse-
engineer and import source
information and generate
schemas for warehouse-
optimized databases. It also
supports dimensional mod-
eling, including star and
snowflake schemas, aggre-
gation, partitioning, sum-
marization, and dimension-
al hierarchies. Additionally,
this new module maintains
a map between source
information and the ware-
house for use in the data

cleansing, extraction,
and end-user query
process.

ProcessAnalyst, S-
Designor’s data flow
discovery and diagram-
ming tool, has added
business rules at the
process level, along
with the ability to link
them to any
ProcessAnalyst object.

AppModeler adds
new generators for
Delphi 2, enabling
developers to use data-
base models by pro-
ducing data-aware
components and applica-
tion prototypes for 3GL
and 4GL development
tools. It also adds a Web
generator that enables
developers to create data-
driven Web sites directly
from a data model that
provide access to databases
and data warehouses.

MetaWorks, the teamwork
module, extends its diction-
ary platform support to
include DB2 and Ingres.
Models can now be extract-
ed at the submodel level,
providing teams of design-
ers greater flexibility for
sharing models.

Price: WarehouseArchitect,
US$4,995; DataArchitect, US$2,495;
Process-Analyst, US$1,495;
AppModeler, US$995; AppModeler
Desktop, US$295; MetaWorks,
US$995; and Viewer, US$395. The S-
Designor DataArchitect Suite bundles
DataArchitect, ProcessAnalyst,
AppModeler, and MetaWorks, and is
priced at US$4,995. The S-Designor
Warehouse Suite bundles
WarehouseArchitect, DataArchitect,
ProcessAnalyst, AppModeler, and
MetaWorks, and is priced at US$9,295.
Contact: Sybase, Inc., 6475 Christie
Ave., Emeryville, CA 94608
Phone: (800) 8-SYBASE or
(510) 922-3500
Fax: (510) 922-3210
Web Site: http://www.sybase.com

4 June 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Understanding ActiveX
and OLE

David Chappell
Microsoft Press

ISBN: 1-57231-216-5
Price: US$22.95

(328 pages)
PPhhoonnee:: (800) MSPRESS
Excel Software Introduces WinTranslator 1.0

Excel Software of Marshall-

town, IA has released
WinTranslator 1.0. Used with
Excel’s WinA&D software
engineering tool, WinTrans-
lator 1.0 generates class dia-
grams from Object Pascal,
C++, or structure charts, as
well as dictionary information
from C, Pascal, Basic, or
Fortran code.

WinTranslator documents
legacy code for human under-
standing, enabling forward
engineering of existing pro-
jects using modern software
engineering methods, and
supports an iterative develop-
ment process between design
and code. It can process
source code written for any
Pascal/Object Pascal, C/C++,
Basic, or Fortran compiler for
DOS, Windows, Macintosh,
UNIX, mainframe, or an
embedded computer system.
The reengineering process

involves a command to add
comment-delimited code keys
to the source files and a com-
mand to generate a text list of
referenced modules. Win-
Translator’s output files are
then imported into WinA&D.
Users can customize Win-
Translator and its output with
language and default options.
Several types of library files are
supported for optimizing
WinTranslator when process-
ing large projects with multi-
ple folders of code files.

Developers can review the
code structure by clicking
through graphic diagrams in
WinA&D or by clicking the
code. WinTranslator can also
extract information from
source code, including class
c
a
p
c
r
p

s
s
f
f
i
c
T
b

j
t
t
t
s
r

attribute and operation data
types, function parameter lists,
and programming comments.
Design changes and enhance-
ments can be made with
WinA&D, with new code
generated.

Price: US$495
Contact: Excel Software, 212 Waconda
Rd., Marshalltown, IA 50158
Phone: (515) 752-5359
Fax: (515) 752-2435
E-Mail: info@excelsoftware.com
Web Site: http://www.excelsoftware.com
IntegrationWare Releases Speed Daemon Version 1.2

IntegrationWare Inc. of

Deerfield, IL has released
Speed Daemon Version 1.2, a
source code profiler for
Delphi. It provides an analysis
engine for optimizing and
tuning applications.

Speed Daemon enables
developers to monitor the effi-
iency of key sections of code
nd realize improvements in
roductivity and code efficien-
y. It also decreases the time
equired for tracking bugs and
erformance issues.
Speed Daemon parses the
ource code and adds any con-
tructs it requires to generate
unction timings. This modi-
ied version of the application
s then recompiled, and exe-
uted automatically or saved.
he entire process is guided
y the wizard interface.
Given a Delphi 1 or 2 pro-

ect, the utility produces statis-
ics for functions, including
he number of times a func-
ion is called, the total time
pent executing the function
elative to other pieces, aver-
age time per call, and more.
This type of analysis allows
developers to isolate potential
problems early in the develop-
ment process.

Speed Daemon works with
Delphi 1 and 2 applications,
including DLLs and OLE
automation servers developed
in Delphi. It can also be used
on single- and multi-threaded
applications.

Price: US$149
Contact: IntegrationWare Inc.,
Deerfield Tech Center, 111 Deer Lake
Rd., Ste. 109, Deerfield, IL 60015
Phone: (888) 773-1133
Fax: (847) 940-1132
E-Mail: sd_feedback@integration-
ware.com
Web Site: http://www.integration-
ware.com

News
L I N E

June 1997

June

1-5 BFMA Symposium, Pointe Hilton
at Tapatio Cliffs, Phoenix, AZ. Contact
Business Forms Management
Association at (800) 876-4683 or (503)
227-3393, or visit http://www.bfma.-
org/~bfma/symp.htm.

2-4 Internet World Middle East,
Holiday Inn Crown Plaza, Dubai,
United Arab Emirates. Contact
Mecklermedia at (800) 632-5537 or
(203) 226-6967, or visit
http://www.events.iworld.com.

2-6 Object Expo/Java Expo, New York
Coliseum, New York, NY. Contact
SIGS Conferences at (212) 242-7447.

4-6 Internet World Mexico ’97, World
Trade Center, Mexico City, Mexico.
Contact Mecklermedia at (800) 632-
5537 or (203) 226-6967, or visit
http://www.events.iworld.com.

9-12 Silicon Graphics Developer
Forum ’97, Hyatt Regency San
Francisco Airport, San Francisco, CA.
Contact Silicon Graphics at (800) 770-
3033 or (415) 933-3033, visit
http://www.sgi.com/support/devprog,
or e-mail devprogram@sgi.com.

16-18 Internet World Israel ’97,
Jerusalem Convention Center,
Jerusalem, Israel. Contact
Mecklermedia at (800) 632-5537 or
(203) 226-6967, or visit
http://www.events.iworld.com.

17-19 Web Innovation, San Jose
Convention Center, San Jose, CA.
Contact SOFTBANK Expos at (800)
953-4932 or (415) 578-6900, or visit
http://www.sbexpos.com.

19-21 Internet World Portugal ’97,
Feira International de Lisbola, Lisbon,
Portugal. Contact Mecklermedia at
(800) 632-5537 or (203) 226-6967, or
visit http://www.events.iworld.com.

[calendar 1997]

5 June 1997 Delphi Informant
8th Annual Borland Developers Conference Scheduled

Scotts Valley, CA —

Featuring over 200 sessions,
this year’s Borland Developers
Conference is slated for July
12-16 at the Opryland
Hotel in Nashville, TN. The
conference will cover Borland
tools, including Delphi,
C++Builder, JBuilder,
IntraBuilder, and Entera.
Los Angeles June 2-4
New York June 9-11
Atlanta June 16-1
Portland June 16-1

San Francisco June 23-2
Detroit June 30-Jul

Chicago July 7-9
Orlando July 14-1

City Delphi Fundam
Days - US$
Beginning, intermediate, and
advanced developers can
choose between sessions such
as: components; design and
methodology; enterprise
computing; InterBase;
Internet and intranet; man-
agement issues; program-
ming, tools, and techniques;
and more.
June 5-6
June 12-13

8 June 19-20
8 June 19-20
5 June 26-27
y 2

July 10-11
6 July 17-18

entals 3
995

Advanced Delphi 2
Days - US$695
In addition, a free confer-
ence CD-ROM is offered to
attendees, featuring techni-
cal papers, source code,
examples from presenta-
tions, and more.

For the latest conference
information, visit Borland
Online at http://www.bor-
land.com.
Informant Press to Release Hidden Paths of Delphi 3

Elk Grove, CA — Informant

Press announced the publica-
tion of Hidden Paths of
Delphi 3 by Ray Lischner.
Available in July 1997, this
title builds on Lischner’s first
book, Secrets of Delphi 2
[Waite Group Press, 1996],
revealing more of Delphi’s
undocumented interfaces.
Hidden Paths of Delphi 3, and
its accompanying CD-ROM,
present a thorough explana-
tion with useful examples of
every Open Tools API fea-
ture.

Introduced in Delphi 2,
the Open Tools API allows
users to create experts (or
wizards) that automate the
creation of new forms and
projects, and store them in
Delphi’s Object Repository.
It also allows programmers
to create new items in
Delphi’s menu, create new
design windows for editing
projects, or define new file
systems for storing and
retrieving source, form, and
resource files.

This advanced program-
ming book covers the Open
Tools API, including when
the programmer should
release interface objects,
how to create a working
stream class, and a Code
Summary Expert.

Hidden Paths of Delphi 3
is priced at US$39.95. To
order, call (800) 884-6367
or (916) 686-6610, or fax
(916) 686-8497. Orders
can also be placed via the
Informant Web site at
http://www.informant.com/-
bookclub/index.htm.
Scotts Valley, CA — Borland
recently announced the pro-
motion of Zack Urlocker, 34,
to vice president of product
management. Urlocker, who
is responsible for Borland’s
product management and
marketing activities, reports
to Chairman and CEO
Delbert W. Yocam.

Previously, Urlocker was
director of product manage-
ment for all Borland
products after serving as
director of Delphi product
management. Urlocker was
involved in the develop-
ment of Delphi and is
credited with developing
Golden Gate, Borland’s
client/server and
Internet/intranet product
strategy.

Borland Appoints
Zack Urlocker Vice
President of Product
Management
ZAC Catalogs Delphi Training Tour

Clearwater, FL — ZAC

Catalogs conducts interac-
tive lecture-style Delphi
training courses each year.
The following is a listing of
upcoming courses. For a
complete schedule and
pricing information,
contact ZAC Catalogs at
(813) 298-1181, or visit
their Web site at
http://www.zaccatalog.com.
June 9-10
June 16-17
June 23-24
June 23-24

June 30-July 1

July 7-8

Creating Custom Components
2 Days - US$695

6 June 1997 Delphi Informant

InterBase Stored Procedures
Creating Them and Using Them from Delphi

On the Cover
InterBase / Delphi

By Jerry Coffey

CREATE PROCEDURE

RETURNS (Address

City

State

ZipCode

AS

BEGIN

FOR

SELECT Addre

FROM Addre

WHERE Provi

INTO :Addr

DO SUSPEND;

END

Figure 1: An exam
One of the cornerstones of successful client/server programming is the
stored procedure. Unfortunately, InterBase stored procedures are woefully

underdocumented, especially regarding the Delphi connection. This article
attempts to help fill the documentation gap.
This article has two major goals. The first is
to provide a general description of an
InterBase stored procedure, describe the ben-
efits of stored procedures, and provide specif-
ic examples of the more common procedures
you’ll need to create. The second is to
explain how Delphi uses the stored proce-
dures, i.e. explain how they’re called.

What Is a Stored Procedure?
A stored procedure is a routine written in
InterBase trigger and procedure language
(catchy, hunh?) that can be called by a client
(e.g. a Delphi application) or another proce-
dure or trigger. Stored procedures can be used
for many things, but this article will focus on
their use with the mainstay SQL statements:
SELECT, INSERT, UPDATE, and DELETE.

SELECT statements are the most common,
so let’s tackle them first. A stored procedure
 SPS_Address_ProviderID(ProviderID INTEGER)

 CHAR(60),

CHAR(30),

CHAR(2),

CHAR(5))

ss, City, State, ZipCode

ss

derID = :ProviderID

ess, :City, :State, :ZipCode

ple of a select procedure.
that contains a SQL SELECT statement is
often referred to as a select procedure.

Stored Procedure Basics
An InterBase stored procedure is created using
a CREATE PROCEDURE statement. The
code in Figure 1, for example, creates a select
procedure named SPS_Address_ProviderID.
This straightforward select procedure returns
four columns from any Address table row that
has a ProviderID column value equal to the
ProviderID provided as an input argument.

As you can see, a select procedure is essential-
ly a SQL SELECT statement in the form of
a function call. Input parameters — if there
are any — are included in the CREATE
statement as a comma-delimited list within
parentheses. There’s only one in this exam-
ple; it’s named ProviderID, and is of type
INTEGER. The InterBase data types are
shown in Figure 2.

Any output parameters — and there must be
at least one for a select procedure — are
described in a RETURNS statement, which
also takes the form of a comma-delimited list
inside parentheses. In this example, there are
four output parameters: Address, City,
State, and ZipCode. All are of type CHAR,
which is used for strings.

Header and body. The CREATE and
RETURNS statements (if RETURNS is pre-
sent) comprise the stored procedure’s header.

None — BLOB segment size is limited to 64KB
ers 1 to 32767 bytes

1 Jan 100 to 11 Dec 5941
precision = 1 to 15, least number of precision digits
scale = 1 to 15, number of decimal places
1.7 x 10-308 to 1.7 x 10308

3.4 x 10-38 to 3.4 x 1038

-2,147,483,648 to 2,147,483,648
same as DECIMAL

-32768 to 32767
ers 1 to 32765 bytes

Range/Precision

n a chart from the InterBase Workgroup Server Data Definition

On the Cover
Everything following
the AS keyword is the
procedure’s body. In
this example, the
body is contained
entirely within the
BEGIN and END
statements required
for every stored pro-
cedure.

There can also be
statements between
the AS and BEGIN
keywords that are
considered part of
the body. These
statements declare
local variables for the stored procedure; we’ll discuss them
later, along with the FOR, INTO, and DO SUSPEND
statements.

Why Use Them?
They’re fast. A query stored on the server as a procedure exe-
cutes far more quickly than one built and executed on the
client. The speed difference is even more pronounced when
your database application is running on a LAN or WAN.
The main reason is that when the client application sends
the query to the server, the server responds with a large
amount of metadata (specific database information about the
requested query). The query plan is then built, and the
query is re-sent to the server for execution.

In contrast, if a stored procedure is used to perform the
SQL statement, the client simply requests that the server
execute the procedure, and send back the answer set (if
any). The result is that just two trips are made between the
client and server, instead of four (one of which contains a
large amount of data).

They’re reusable. In a database application of significant size,
you’ll find yourself using the same SQL statements
(SELECTs, INSERTs, etc.) repeatedly. Rather than recreate a
statement on the client each time, it’s better to store the state-
ment in the database, and call it. It’s the same idea as main-
taining a library of procedures and functions shared between
modules. The benefits are the same, as well: readability is
enhanced, and redundancy, maintenance, and documentation
are greatly reduced.

They’re part of the database. Although this has been men-
tioned, it bears repeating that a stored procedure is part of
the database. Not only does this make the procedure readily
accessible to the database, it also insures that the procedure
is syntactically correct, and that the SQL statements includ-
ed in the procedure are correct. The database will not accept
it until it’s valid, i.e. the CREATE PROCEDURE state-
ment will fail.

BLOB variable
CHAR(n) n charact
DATE 64 bits
DECIMAL(precision, variable
scale)
DOUBLE PRECISION 64 bits
FLOAT 32 bits
INTEGER 32 bits
NUMERIC(precision, variable
scale)

SMALLINT 16 bits
VARCHAR(n) n charact

Name Size

Figure 2: InterBase data types (based o
Guide, pages 46-7).
7 June 1997 Delphi Informant
Creating Select Procedures
We’ll examine five types of stored procedures:

a SELECT statement that may return multiple rows
a SELECT statement that returns one row
an INSERT statement
an UPDATE statement
a DELETE statement

Creating a Multi-Row SELECT
When a SELECT statement might return multiple rows,
the stored procedure must use the FOR..DO looping con-
struct. We’ve already seen this in Figure 1:

FOR

SELECT Address, City, State, ZipCode

FROM Address

WHERE ProviderID = :ProviderID

INTO :Address, :City, :State, :ZipCode

DO SUSPEND;

Here a FOR..DO loop has been placed around the
SELECT statement. This will cause the SUSPEND com-
mand to be executed for each row returned by the SELECT
statement. (SQL programmers will recognize this as a fetch
loop on an open cursor.)

Fine — but what does SUSPEND do? It’s got a lousy
name, but a SUSPEND command is absolutely necessary
to make the SELECT stored procedure work. It causes the
stored procedure to return a value via the variables associ-
ated with the INTO clause. (Note: InterBase will accept a
stored procedure without a SUSPEND statement, but the
stored procedure will never return a value.)

Loading the output variables. An additional clause on the
SELECT statement may be new to you. The INTO clause
describes the variables that will be loaded with the result
of the SELECT statement, then returned by the stored
procedure via the variables described in the RETURNS

SET TERM ^ ;

CONNECT "c:\doj\cmis\cmis.gdb"^

CREATE PROCEDURE SPU_Penalty

(

PenaltyID INTEGER,

PartyID INTEGER,

PenaltyType CHAR(20),

PenaltyUnitType CHAR(10),

DateOfPenalty DATE,

PenaltyUnits INTEGER

)

AS

BEGIN

UPDATE Penalty

SET PartyID

WHERE PenaltyID = :PenaltyID; = :PartyID,

PenaltyType = :PenaltyType,

PenaltyUnitType = :PenaltyUnitType,

DateOfPenalty = :DateOfPenalty,

PenaltyUnits = :PenaltyUnits

END^

SET TERM ; ^

Figure 5: This stored procedure describes a SQL UPDATE
statement.

SET TERM ^ ;

CONNECT "c:\doj\cmis\cmis.gdb"^

CREATE PROCEDURE SPS_Subject_Confidential(

ProviderID INTEGER)

RETURNS (ConfideCount INTEGER)

AS

BEGIN

SELECT COUNT(*)

FROM Party P, CaseStatus CS, Status S

WHERE P.ProviderID = :ProviderID

AND CS.ComplaintID = P.ComplaintID

AND CS.Status = S.Status

AND S.ConfidentialityFlag = 'T'

AND CS.StatusDate =

(SELECT MAX(StatusDate)

FROM CaseStatus Case

WHERE Case.ComplaintID = P.ComplaintID)

INTO :ConfideCount;

SUSPEND;

END^

SET TERM ; ^

SET TERM ^ ;

CONNECT "c:\doj\cmis\cmis.gdb"^

CREATE PROCEDURE SPI_Payment

(

MoneyOwedBMCFID INTEGER,

AmountPaid FLOAT,

CheckNumber CHAR(15),

DateOfCheck DATE,

DateMoneyReceived DATE,

DateMoneyDistributed DATE

)

AS

BEGIN

INSERT INTO Payments

(

MoneyOwedBMCFID,

AmountPaid,

CheckNumber,

DateOfCheck,

DateMoneyReceived,

DateMoneyDistributed

)

VALUES

(

:MoneyOwedBMCFID,

:AmountPaid,

:CheckNumber,

:DateOfCheck,

:DateMoneyReceived,

:DateMoneyDistributed

);

END^

SET TERM ; ^

Figure 3 (Top): This ISQL script creates a singleton SELECT. This
COUNT statement will always return one row, so there is no
need for the FOR..DO loop. Figure 4 (Bottom): This stored pro-
cedure describes a SQL INSERT statement.

On the Cover
statement. They must agree in number, order, and name,
or InterBase will not accept the procedure.

A Singleton SELECT
When a SELECT statement will return only one row,
there’s no need for a FOR..DO loop (see Figure 3).
8 June 1997 Delphi Informant
However, it’s important to ensure that the SELECT will
never attempt to return more than one row, i.e. that the
WHERE clause uses a unique row identifier. If InterBase
determines that multiple rows are possible, it will not
accept the procedure.

The SELECT statement in Figure 3 is returning the result
of the aggregate function, COUNT, so it will always return
one row. (Incidentally, it also features a sub-SELECT. This
type of query is useful in any situation where you need to
determine the current status row for something — a “case”
in this instance.)

The SELECT statement now requires a terminating
semicolon:

INTO :ConfideCount;

as does the one-word SUSPEND statement that immedi-
ately follows it.

This is in contrast to the stored procedure shown in Figure 1.
It may seem odd, but in the multiple SELECT shown in
Figure 1, there’s only one statement in the body of the proce-
dure: It’s a FOR..DO statement that’s terminated just after the
SUSPEND command:

DO SUSPEND;

Therefore, there is no terminating semicolon for the
SELECT itself.

An INSERT
An INSERT statement is used to add a row to an InterBase
table. No RETURNS variable is necessary for an INSERT
stored procedure (see Figure 4). Not shown is that an
InterBase trigger is using a generator to automatically assign

SET TERM ^ ;

CONNECT "c:\doj\cmis\cmis.gdb"^

CREATE PROCEDURE SPD_LicenseToBill (ProviderID INTEGER)

AS

BEGIN

DELETE FROM LicenseToBill

WHERE ProviderID = :ProviderID;

END^

SET TERM ; ^

Figure 6: This stored procedure describes a SQL DELETE statement.

On the Cover

procedure ...

var
FetchCount : Word;

QueryAddress : TQuery;

...
QueryAddress := TQuery.Create(Self);

with QueryAddress do begin
DatabaseName := 'CMIS_DB';

SQL.Add('SELECT AddressType, Address, City, County, ');

SQL.Add(' State, ZipCode, ZipPlus4, PhoneNumber');

SQL.Add(' FROM Address ');

SQL.Add(' WHERE ProviderID = :ProviderID ');

ParamByName('ProviderID').AsInteger :=

SubjectUpdateProviderID;

Open;

FetchCount := 0;

while EOF = False do begin
with StringGridAddress do begin

RowCount := FetchCount + 1;

Cells[0,FetchCount] := Fields[0].Text;

Cells[1,FetchCount] := Fields[1].Text;

Cells[2,FetchCount] := Fields[2].Text;

Cells[3,FetchCount] := Fields[3].Text;

Cells[4,FetchCount] := Fields[4].Text;

Cells[5,FetchCount] := Fields[5].Text;

Cells[6,FetchCount] := Fields[6].Text;

Cells[7,FetchCount] := Fields[7].Text;

end;
Inc(FetchCount);

Next;

end;

Free;

end;
...

end;

Figure 7: Describing and executing a SQL SELECT statement
with Object Pascal.
a value to a primary key column — a typical scenario.
(These issues are discussed in detail in Bill Todd’s article,
“InterBase Triggers and Generators,” beginning on page 11.)

An UPDATE
An UPDATE statement is used to modify one or multiple
columns of an existing row in an InterBase table. No
RETURNS variable is necessary for an UPDATE stored pro-
cedure (see Figure 5). However, one or more of the input
arguments must be used in a WHERE clause to identify the
row to update.

A DELETE
A DELETE statement is used to remove an existing row or
rows from an InterBase table. No RETURNS variable is nec-
essary for a DELETE stored procedure (see Figure 6). One or
more of the input arguments must be used in a WHERE
clause to identify the row(s) to delete.

ISQL Scripts
To add a stored procedure to an InterBase database, you must
describe the stored procedure in an ISQL script, then run that
script using ISQL. The code examples presented so far are ISQL
scripts that must be run through InterBase’s interactive interface,
ISQL (using the menu command File | Run an ISQL Script). A
couple of tricks are required to make these scripts work.

First, although you may already have connected to an InterBase
database using ISQL (File | Connect to Database), it is still nec-
essary to explicitly connect each time an ISQL script is execut-
ed. This is done with a CONNECT statement; for example:

CONNECT "c:\doj\cmis\cmis.gdb"^

The trouble with terminators. Second, an ISQL script must
satisfy two masters: the ISQL tool itself, and the InterBase
database it addresses. Both require statement terminators,
and both use the semicolon (;) as their default terminator
character. Something’s gotta give, so you need to temporarily
change the terminator for ISQL. This is done with the SET
TERM command. This statement, for example:

SET TERM ^ ;

tells ISQL to use the carat (^) character as a terminator
until further notice. You can use any character you like as
the alternate terminator, but I would highly recommend
9 June 1997 Delphi Informant
that you use something unusual. Typically, the last state-
ment in an ISQL script replaces the semicolon as the ter-
minating character.

Calling Stored Procedures from Delphi
Okay, we know how to build the stored procedures. Now
how do we call them from Delphi? There are two ways —
one is necessary for SELECT statements (i.e. statements that
return a value), the other for INSERT, UPDATE, and
DELETE statements.

Stored procedures with SELECT statements are called from
Delphi using a Query object (of class TQuery). This is despite
the fact that we’re calling a stored procedure; again, a Delphi
Query object is used for any statement that returns the result
of a SELECT statement. The other SQL statements —
INSERT, UPDATE, and DELETE — are called using a
Delphi StoredProc object (of class TStoredProc).

Calling a Select Procedure
We’ll describe how stored procedures are called, beginning with
a SELECT statement. First, however, let’s back up a bit and take
a look at how we’d describe and call a “conventional” query (i.e.
one not contained in a select procedure) using Object Pascal (see
Figure 7).

First the Query object, QueryAddress, is instantiated, and its
Database and SQL properties are assigned values. Then the

Figure 8: Executing an InterBase select procedure from Object
Pascal.

On the Cover

var
StoredProcPenalty : TStoredProc;

...

StoredProcPenalty := TStoredProc.Create(Self);

with StoredProcPenalty do begin
DatabaseName := 'cmis_db';

StoredProcName := 'SPU_Penalty';

Prepare;

ParamByName('PenaltyID').AsInteger := PenaltyPenaltyID;

ParamByName('PartyID').AsInteger := PenaltyPartyID;

ParamByName('PenaltyType').AsString :=

ComboBoxPenaltyType.Text;

ParamByName('PenaltyUnitType').AsString :=

ComboBoxPenaltyUnits.Text;

ParamByName('DateOfPenalty').AsDate :=

StrToDate(MaskEditPenaltyDate.Text);

ParamByName('PenaltyUnits').AsInteger :=

StrToInt(MaskEditPenalty.Text);

ExecProc;

Free;

end;

Figure 9: Executing a stored procedure that contains an INSERT
statement.

Jerry Coffey is Editor-in-Chief of Delphi Informant.

var
FetchCount : Word;

QueryAddress : TQuery;

...

QueryAddress := TQuery.Create(Self);

with QueryAddress do begin
DatabaseName := 'CMIS_DB';

SQL.Add('SELECT AddressType, Address, City, County, ');

SQL.Add(' State, ZipCode, ZipPlus4, PhoneNumber');

SQL.Add(' FROM SPS_Address_ProviderID (:ProviderID) ');

ParamByName('ProviderID').AsInteger :=

SubjectUpdateProviderID;

Open;

FetchCount := 0;

while EOF = False do begin
with StringGridAddress do begin

RowCount := FetchCount + 1;

Cells[0,FetchCount] := Fields[0].Text;

Cells[1,FetchCount] := Fields[1].Text;

Cells[2,FetchCount] := Fields[2].Text;

Cells[3,FetchCount] := Fields[3].Text;

Cells[4,FetchCount] := Fields[4].Text;

Cells[5,FetchCount] := Fields[5].Text;

Cells[6,FetchCount] := Fields[6].Text;

Cells[7,FetchCount] := Fields[7].Text;

end;
Inc(FetchCount);

Next;

end;

Free;

end;
single query parameter, ProviderID, is assigned a value, and
the query is executed using the Open method. In this exam-
ple, a while loop is used to take the results of the query and
load them into a StringGrid component.

All of this is familiar, but how do we change it to call a stored
procedure? For this SELECT statement, the changes are fairly
minor (see Figure 8). There are two notable differences:

First, the FROM clause now refers to the name of the
stored procedure, SPS_Address_ProviderID, not a
specific table. (The difference would be more pronounced
if there were a list of tables.)
Second, there is no WHERE clause; the WHERE clause
is described in the stored procedure. The input parameter
is simply placed in parentheses following the FROM
clause. (Again, the difference would have been more pro-
nounced if there had been an elaborate WHERE clause.)

The rest of the procedure is the same: Multiple rows are
being loaded into a StringGrid, with the Next method
being used to fetch the next record in the answer stream.
Note also that a looping structure would be unnecessary if
the code were calling a singleton SELECT.

Calling a Stored Procedure to Perform
an INSERT, UPDATE, or DELETE Operation
As mentioned earlier, a Delphi StoredProc object must be
used for SQL operations that do not return an answer set,
i.e. the result of a SELECT statement. Therefore, they’re
used to call stored procedures that contain INSERT,
UPDATE, and DELETE statements.

From a Delphi standpoint, these three statements are han-
dled the same, so we’ll look at just one — an UPDATE.
The Object Pascal code in Figure 9 calls a stored proce-
dure that contains the UPDATE statement from Figure 5.

There are some similarities: A StoredProc object is instan-
tiated in the same way as a Query object, and its Database
property must also be assigned.

After that, however, the similarities disappear. The
StoredProcName property must be assigned the name of the
stored procedure — in this case, SPU_Penalty. Also, the
Prepare method must be used to tell the server to get the stored
procedure ready to accept input, and otherwise prepare for exe-
cution. Note also that the ExecProc method is used instead of
Open (just as it is when TQuery objects return no value).

After Prepare has been called, the parameters can be
assigned just as they are with Query objects — using the
ParamByName method. Finally, the ExecProc method is
used to execute the stored procedure (again, in lieu of the
Query Open method, because no value is returned).

Conclusion
We’ve examined real-world examples of how to use
InterBase stored procedures to develop a client/server
10 June 1997 Delphi Informant
application with Delphi. Along the way, we’ve covered the
basics of InterBase trigger and procedure language, and —
among other things — learned how to build select proce-
dures, and how to call stored procedures from Delphi.

Another benefit of learning InterBase trigger and procedure
language is that it’s very much like the procedural languages
used by other database vendors (Oracle’s PL/SQL, for
example), so once you’ve mastered the InterBase flavor, you’ll
make short work of the next. ∆

11 June 1997 Delphi Informant

InterBase Triggers and Generators
Inside InterBase: Part I

On the Cover
InterBase / Object Pascal / SQL

By Bill Todd
You cannot write client/server applications without triggers. This may seem
a strong statement, and although it’s not strictly true, you certainly cannot

write even moderately complex client/server applications without triggers.
Triggers let you customize the behavior of a database so it responds to
changes in data exactly as you specify.
In this article, we’ll examine InterBase trig-
gers and generators (a tool for generating
unique values), and some specific uses for
them in client/server programs. This article
is accompanied by the file DITABLES.SQL.
This InterBase ISQL script creates the sim-
ple, three-table database and triggers used in
our examples (see the download message at
the end of the article for details).

Similarities and Differences
InterBase triggers are very similar to stored
procedures. Like stored procedures, triggers
are written in the InterBase procedure and
trigger language, and stored as part of the
metadata for a database. Triggers differ from
stored procedures in the way they’re called.
Stored procedures are called explicitly in
your code; triggers are called automatically
in response to a change in data.

When they fire. InterBase triggers can be
associated with INSERT, UPDATE, or
DELETE events for a table. In addition,
you can specify whether a trigger fires
before or after the event using the BEFORE
and AFTER keywords. Combining these
keywords and events provides six triggers:
BEFORE INSERT, AFTER INSERT,
BEFORE UPDATE, AFTER UPDATE,
BEFORE DELETE, and AFTER DELETE.

You can attach as many triggers as you
wish to any of these events. Thus you can
write short, simple, single-function triggers
that are easy to develop, test, and main-
tain. Additionally, triggers can call stored
procedures, which provide another way to
divide your code into modules.

Position. When creating a trigger, you also
specify a position number for it. An integer
between 0 and 32,767, the position number
determines the order in which multiple
triggers attached to the same event execute.

When attaching multiple triggers to the same
event, it’s a good idea to increment position
numbers by five or 10, so later you can easily
add other triggers anywhere in the execution
order. InterBase allows you to have multiple
triggers with the same position number; how-
ever, the order of execution is unpredictable.

Participation in transactions. It’s important
to understand how triggers participate in
transactions. If a trigger makes changes to
the database, those changes are part of the
transaction that caused the trigger to fire. If
the transaction is rolled back, all changes
made by the trigger are also rolled back.

Here’s an example: You start a transaction and
delete a customer record. The Customer table
has a BEFORE DELETE trigger that deletes
all the customer’s orders from the Orders
table. The Orders table has a BEFORE
DELETE trigger that deletes all the items for
each order from the Items table. If you roll
back the transaction, all the DELETEs for
the Items, Orders, and Customer tables will
be rolled back. If any of the triggers calls a
stored procedure, the stored procedure’s
actions will also be part of the transaction.

CREATE EXCEPTION orders_ri "No customer record.";

CREATE TRIGGER order_prevent_insert FOR orders

BEFORE INSERT POSITION 10 AS

DECLARE VARIABLE RECORD_COUNT INTEGER;

BEGIN

SELECT COUNT(cust_num)

FROM customer C

WHERE C.cust_num = NEW.cust_num

INTO :RECORD_COUNT;

IF (RECORD_COUNT = 0) THEN

EXCEPTION orders_ri;

END ^

Figure 2: The referential integrity trigger for the Orders table.

On the Cover
Logging Changes
Triggers can be used for a variety of tasks, including: logging
changes to a history table, enforcing referential integrity, cas-
cading deletes and updates, data validation, and making a
multi-table view updatable. Another powerful use for triggers
in InterBase databases is to create an event that will use
InterBase’s unique event alerter technology to notify any inter-
ested programs that the event has occurred. (Event alerters are
the topic of “InterBase Event Alerters,” an article by
Alexander Le and Donna Burbank, beginning on page 15.)

Creating a log of changes to a database table is a common
requirement, and serves as a good introduction to the
basics of InterBase triggers. Orders and Order_History are
two of the sample tables accompanying this article. Their
structures are identical, but Order_History has one addi-
tional column, Change_Date, that will store the date the
order record was changed.

Figure 1 shows the log_order_change trigger. Attached to
the Orders table, it will write a record containing the order
record’s prior image to the Order_History table each time an
order record is updated.

The CREATE TRIGGER statement consists of a header
and body. Everything up to the AS keyword comprises the
header. It must include the trigger’s name, followed by the
keyword FOR, followed by the name of the table to which
the trigger applies.

The optional keyword, ACTIVE or INACTIVE, follows the
table name. If you don’t want the trigger to fire when its
event occurs, create it with INACTIVE. You can activate the
trigger later using the SQL statement ALTER TRIGGER.
Because ACTIVE is the default state of all triggers, there’s no
reason to use it.

Next comes the AFTER or BEFORE keyword and the name
of the event that will fire the trigger. The log_order_change
trigger fires after the UPDATE operation because we don’t
want to log the update until after it happens.

Although log_order_change is the first trigger for the
Orders table, the CREATE TRIGGER statement includes
a position number of 10. The position is optional; how-
ever, adding a position number now makes it easy to add
another trigger to the same event later, and have it execute
before or after this trigger by assigning a higher or lower
position number.

CREATE TRIGGER log_order_change FOR orders

ACTIVE AFTER UPDATE POSITION 10 AS

BEGIN

INSERT INTO order_history

(order_num, change_date, cust_num,

order_date, ship_date)

VALUES (OLD.order_num, "now", OLD.cust_num,

OLD.order_date, OLD.ship_date);

END ^

Figure 1: Logging changed records with the
log_order_change trigger.
12 June 1997 Delphi Informant
The trigger’s body follows the AS keyword and consists of
one or more InterBase procedure and trigger language state-
ments enclosed in a BEGIN..END block. In Figure 1, the
body consists of a single INSERT statement that creates a
new record in the Order_History table.

OLD and NEW. Note the use of the context variable OLD
in the VALUES clause of the INSERT statement. Within a
trigger’s body, you can access the old and new values of all
columns in the table. For example, the old value of the
Order_Num column is accessed as OLD.order_num.

Conversely, the column’s new value is NEW.order_num.
Using context variables, you can determine which columns
have changed, then perform any operations you want with
old and new values. The VALUES clause also uses the key-
word NOW to insert the current date and time into the
Change_Date column. OLD does not apply in an INSERT
trigger because there are no old values, and the context vari-
able, NEW, does not apply in a DELETE trigger because
there are no new values when a row is deleted.

Referential Integrity
While InterBase supports declarative referential integrity
through FOREIGN KEY declarations, there are two impor-
tant limitations. InterBase does not support either cascaded
updates or deletes via declarative referential integrity. If you
need either of these features, you must implement referential
integrity through triggers.

Providing referential integrity with cascaded updates and
deletes requires three triggers. For the Customer and Orders
tables, we need:
1) A BEFORE INSERT trigger on Orders to enforce refer-

ential integrity.
2) A BEFORE DELETE trigger on Customer to cascade

deletes.
3) A BEFORE UPDATE trigger on Customer to cascade

updates.

The code in Figure 2 first creates the exception, orders_ri.
Then, the order_prevent_insert trigger is created. It rais-
es an exception if a user tries to add an order record with a
customer number that doesn’t match a record in the
Customer table. You can create as many exceptions as needed
to provide custom error messages within your triggers.

CREATE EXCEPTION not_licensed

"We are not licensed in that state.";

CREATE TRIGGER check_license FOR customer

BEFORE INSERT POSITION 10 AS

DECLARE VARIABLE RECORD_COUNT INTEGER;

BEGIN

SELECT COUNT(cust_num)

FROM licensed_states L

WHERE L.state = NEW.state

INTO :RECORD_COUNT;

IF (RECORD_COUNT = 0) THEN

EXCEPTION not_licensed;

END ^

Figure 6: A data validation trigger.

CREATE TRIGGER cust_delete_orders FOR customer

BEFORE DELETE POSITION 10 AS

BEGIN

DELETE FROM orders

WHERE orders.cust_num = OLD.cust_num;

END ^

Figure 3: Cascading deletes.

CREATE TRIGGER cust_update_orders FOR customer

BEFORE UPDATE POSITION 10 AS

BEGIN

IF (OLD.cust_num <> NEW.cust_num) THEN

UPDATE orders

SET cust_num = NEW.cust_num

WHERE cust_num = OLD.cust_num;

END ^

Figure 4: Cascading updates to the Orders table.

CREATE EXCEPTION customer_delete "Customer has orders.";

CREATE TRIGGER customer_prevent_delete FOR customer

BEFORE INSERT POSITION 10 AS

DECLARE VARIABLE RECORD_COUNT INTEGER;

BEGIN

SELECT COUNT(order_num)

FROM orders O

WHERE O.cust_num = OLD.cust_num

INTO :RECORD_COUNT;

IF (RECORD_COUNT <> 0) THEN

EXCEPTION customer_delete;

END ^

Figure 5: Preventing deletion using the
customer_prevent_delete trigger on the Customer table.

On the Cover
The cust_delete_orders trigger in Figure 3 cascades deletes
from the Customer table to the Orders table. This BEFORE
DELETE trigger fires whenever a customer is deleted, and
ensures all order records for this customer are deleted before
the customer record is deleted. If the trigger can’t delete the
order records, an exception will be raised and prevent the cus-
tomer record from being deleted.

Cascaded updates are handled by the cust_update_orders
trigger in Figure 4. It checks if the value of the key field in the
Customer table has changed by comparing the old and new
values. If the value has changed, the UPDATE statement
updates the foreign key in all the order records. Using a
BEFORE UPDATE trigger will prevent the customer record
from being updated unless all the order records are successfully
updated. You can use a similar trigger to make a multi-table
view updatable. Simply provide an AFTER UPDATE trigger
to update the tables from which the view is derived.

Using triggers, you can easily propagate referential integrity
with cascading updates and deletes throughout a complex data
model. Consider a more realistic database that includes an
Items table as a child of the Orders table. In addition to the
triggers previously described, you would need three more:
1) A BEFORE INSERT trigger for Items to ensure the order

record exists.
2) A BEFORE DELETE trigger for Orders to delete all items

for the order.
3) A BEFORE UPDATE trigger for Orders to update the

order number in the item records.

Of course, you don’t need to cascade both deletes and
updates. To allow a customer to be deleted if that customer
has orders, you would change the BEFORE DELETE trig-
ger for the Customer table (see Figure 5). The
customer_prevent_delete trigger counts the order records
with the same customer number as the customer record
being deleted. If the count is not zero, the trigger raises an
exception (customer_delete) that blocks the deletion.

On the Server: Validating Data
One of the significant advantages offered by database servers is
the ability to handle all your data integrity checks on the server.
Validating data on the server means you have one centralized set
13 June 1997 Delphi Informant
of business rules that apply to every program that accesses your
data. Even the DBA can’t bypass your data validation rules
without explicitly dropping or disabling them.

Another advantage of centralizing data validation on the
server is that it’s easy to change the rules if necessary.
Changing a constraint or trigger on the server immediately
affects every applicable client program; there’s no need to
recompile or change the application programs in any way.

Constraints and triggers are the two mechanisms for vali-
dating data on an InterBase server. InterBase’s CHECK
constraint is so powerful that you can usually get along
without using triggers for data validation. Although they’re
a little more work, using triggers offers one big advantage:
You have complete control over the exception raised and its
error message if the data is invalid. Figure 6 is a simple
example. The check_license trigger won’t allow you to
insert a new customer record unless the state in which the
customer is located is in the Licensed_States table.
Using Generators
A generator is an InterBase object that provides unique num-
bers in a multi-user environment. If you have a table that has
no practical, natural primary key, you can use a generator to
provide a unique number to use as a surrogate key. The CRE-
ATE GENERATOR statement allows you to create a generator
and assign a unique name to it. For example, this statement
creates a generator to generate unique customer numbers:

CREATE GENERATOR customer_numbers

CREATE PROCEDURE next_cust_num

RETURNS (new_cust_num INTEGER) AS

BEGIN

next_cust_num = GEN_ID(customer_numbers, 1);

END ^

Figure 7: This stored procedure obtains the next value from a
generator.

On the Cover

Bill Todd is President of The Database Group, Inc., a database consulting and develop-
ment firm based near Phoenix. He is co-author of Delphi: A Developer’s Guide [M&T
Books, 1995], Delphi 2: A Developer’s Guide [M&T Books, 1996], and Creating
Paradox for Windows Applications [New Riders Publishing, 1994], and is a member
of Team Borland providing technical support on CompuServe. He is also a nationally
known trainer and has been a speaker at every Borland Developers Conference and the
After a generator is defined, you can set its starting value or
reset its value using the SET GENERATOR statement. To
obtain the next value from a generator, call the GEN_ID
function and supply the generator’s name and increment
value as parameters.

Inside Delphi. There’s a trick to using generators in a Delphi
program. Normally, to obtain a unique key from a generator,
you would use a BEFORE INSERT trigger to get the next
value from the generator, and assign it to the key field in the
new record.

If you do this in a database used by a Delphi program, howev-
er, you’ll get an error stating that the record has been deleted
each time you try inserting a new record. This happens because
the Delphi Visual Component Library automatically rereads
each new record after it’s posted so you’ll retain your position
on the new record. The problem is Delphi has no way to know
the trigger in the database changed the primary key’s value in
the new record, so it can’t find the record.

The solution is to create an OnNewRecord event handler for
your table. In OnNewRecord, you can call a stored procedure
that returns the next value from the generator and assigns that
value to the key field before the record is posted.

Figure 7 shows the stored procedure, next_cust_num, that
returns the next value from a generator. To call the proce-
dure from your Delphi program, drop a TStoredProc com-
ponent on your form. Set its DatabaseName property to the
alias for your InterBase database and the StoredProcName
property to next_cust_num. In OnNewRecord, use this
code to call next_cust_num and retrieve the next value
from the generator:

with StoredProc1 do begin
ExecProc;

CustTbl.FieldByName('cust_num').AsInteger :=

ParamByName(new_cust_num).AsInteger;

end;
14 June 1997 Delphi Informant
Conclusion
Triggers may be the most powerful tool in a database serv-
er. They allow you to create programs that are part of the
database and cause the database to respond to changes in
the data it contains in any way you wish. Triggers can be
used to implement referential integrity with cascaded
updates and deletes, validate data, notify programs an
event has occurred — or just about anything else you can
think of. Using triggers, you can centralize your business
rules in the database for consistency and easy mainte-
nance, and reduce the amount of code required in your
client programs.

While this article is a good introduction to InterBase trig-
gers, it’s not a thorough treatment of the InterBase proce-
dure and trigger language. When you start working with
stored procedures and triggers, read the appropriate sec-
tions of the InterBase manuals. They present all the lan-
guage’s features, giving you a good overview of the power
and flexibility available in triggers. ∆

The ISQL script, DITABLES.SQL, is available on the Delphi
Informant Works CD located in INFORM\97\JUN\DI9706BT.
Borland Conference in London. He can be reached on CompuServe at 71333,2146, on
the Internet at 71333.2146@compu-serve.com, or at (602) 802-0178.

15 June 1997 Delphi Informant

InterBase Event Alerters
An Introduction to the IBEventAlerter Component

On the Cover
InterBase / Object Pascal / SQL

By Alexander Le and Donna Burbank
As Delphi developers, we are experienced in using Delphi as a front-end tool.
Commands are sent from our application to update and populate the data-

base; the Delphi client application is in complete control of data exchange, and
the database mutely accepts the data. With the use of InterBase event alerters,
however, this relationship is reversed. When the Delphi IBEventAlerter component
is combined with InterBase events, we can create a robust database application
with the ability to talk back. This article will focus on InterBase event alerters, and
using these events with Delphi’s IBEventAlerter component.
Our goal is to understand how to create an
event inside InterBase, and trap for that specific
event within our database application. Consider,
for example, a typical inventory application writ-
ten in Delphi. It would probably be helpful to
alert the user when a certain stock item has been
deleted — perhaps by another application, such
as an order-entry system. InterBase allows us, as
developers, to register events that will notify our
front-end application of a certain occurrence.

On the InterBase Side
In InterBase, such an event alerter would be
implemented using the POST_EVENT com-
mand. First, we must decide where to initiate
this particular event. We can accomplish this by
creating a stored procedure or trigger to surface
the particular event message:

CREATE TRIGGER Time_to_Order_More FOR Stock

AFTER ACTIVE INSERT

AS

BEGIN

POST_EVENT "order_more";

END

On the Delphi Side
This trigger will post an order_more event to
the InterBase Event Manager. Once this event
has been implemented in InterBase, the
Delphi application must be able to receive this
particular message. There are two ways that an
application can wait for an InterBase event:
synchronously and asynchronously.

Synchronous vs. asynchronous. With a syn-
chronous wait, an application expresses inter-
est in an event, stops all other processing,
and continually polls the database to see if
this event has occurred. This polling con-
sumes resources on both the server and
client. This is clearly a suboptimal solution
in most cases. For this method to be used
successfully, the application should run as an
automated process on the server or client
machine, and execute its specified task only
when the event occurs.

Figure 1: Viewing events in InterBase Interactive SQL.

On the Cover
With asynchronous event trapping, the application informs
the database that it’s interested in an event, but does not
stop other processing to wait for that particular event to
occur. The application simply passes the name of a status
function to the InterBase Event Manager, and moves on.
When the event occurs, the Event Manager calls the func-
tion on behalf of the application.

The Sample Application
Now that we’ve learned what events are and how to use
them in InterBase, let’s see how to harness this functionality
with a sample application.

Keep in mind that any client programming environment
can respond to an InterBase event by making the appropri-
ate low-level InterBase calls. Delphi 2, however, makes these
low-level calls unnecessary, by providing the IBEventAlerter
component found on the Samples page of the Component
palette. (Although Delphi 1 doesn’t include the
IBEventAlerter component, it can be downloaded from
Borland’s Delphi forum on CompuServe: GO DELPHI.)
This component insulates the programmer from the com-
plexity of the underlying InterBase low-level routines.

Phase I
Our sample application will be divided into two phases. In
Phase I, we’ll create a script to define a trigger in the
InterBase database. This trigger will post a new_record
event each time an insert occurs in the Country table of the
IBLOCAL database. This database and associated alias ships
with Delphi 2. Simply select IBLOCAL from the databases
listed in the Database Name property of the TDatabase com-
ponent. We will then execute the script using ISQL.

In Phase II, we’ll create an application that traps for the
new_record event. The application will display a message each
time this event occurs, informing the user of an insert in the
Country table.

Let’s create the event trigger. Open any text editor, and enter
the following script:

/* Connect to IBLOCAL Sample Database */

CONNECT

"C:\Program Files\Borland\IntrBase\EXAMPLES\Employee.gdb"

USER "sysdba" PASSWORD "masterkey";

/*Create Trigger to post an event */

SET TERM ^ ;

CREATE TRIGGER insert_new_country FOR country

AFTER INSERT

AS

BEGIN

POST_EVENT "insert_record";

END ^

SET TERM ; ^

/* Commit the changes to the database */

COMMIT;

/* Disconnect from the Database */

DISCONNECT;
16 June 1997 Delphi Informant
Our script accomplishes several tasks. Initially, the script con-
nects to the IBLOCAL database using the sysdba login and
masterkey password. Once connected, we create a trigger for
the Country table. This trigger is tied to the INSERT event
of the table. The database change is then committed, and we
disconnect from the database. Make sure you save the script.

To execute this script, start ISQL and select File | Run an

ISQL Script. In the File Open dialog box, choose the script
we created earlier, and select OK. Once executed success-
fully, we can view the event using the View | Metadata

Information option (see Figure 1). This will display the
current list of triggers and their associated tables within
the database.

Phase II
Now open Delphi and create a new application (File | New

Application). Place the following components on the form,
as shown in Figure 2:

Database
Table
DataSource
DBGrid
DBNavigator
IBEventAlerter

After you’ve saved the form and project, attach the
DBGrid and DBNavigator components to the DataSource
component. Now attach the DataSource component to the
Table component. After the DataSource and Table compo-
nents are connected, double-click on the Database compo-
nent and, using the Database Component editor, connect
it to IBLOCAL under AliasName (see Figure 3). The Table
component should then be connected to the Database
component, and the TableName property should point to
the Currency table. Then attach the IBEventAlerter com-
ponent to the Database component.

Figure 4: The Events Property editor.

Figure 3: Connecting to the database.

On the Cover

Figure 2: Placing the components on the example form.
You’ll notice the IBEventAlerter component has several key
properties. The Database property allows us to connect to
the Database component that will register a specific event
with the InterBase Event Manager. The Events property gives
us a property editor to specify which events we would like to
register with the InterBase Event Manager.

Registration Issues
The Boolean Registered property determines whether the
events will be registered with the InterBase Event
Manager. This property can also be set in code through
the use of two methods: RegisterEvents will set it to True;
UnregisterEvents will set it to False.

Now select the IBEventAlerter component and double-
click on the Events property in the Object Inspector to
invoke the Events property editor (see Figure 4). In this
application, we would like the IBEventAlerter component
to trap for the insert_record event that we created
inside the Currency table. Request that the
insert_record event be registered by entering the event
string into the Events property editor.

We would also like our application to register and unregis-
ter the insert_record event with the InterBase Event
Manager. To do this, create the following OnCreate and
OnDestroy events for the form:
17 June 1997 Delphi Informant
procedure TfrmTestAlert.FormCreate(Sender: TObject);

begin
IBventAlerter1.RegisterEvents;

end;

procedure TfrmTestAlert.FormDestroy(Sender: TObject);

begin
IBEventAlerter1.UnregisterEvents;

end;

In addition to the properties, the IBEventAlerter component
also defines an event handler called OnEventAlert. This event
handler provides several key parameters for the developer’s
use. The EventName parameter provides the string of the spe-
cific event passed to this event handler; EventCount provides
the number of posted events; and, CancelAlerts allows us to
cancel the trapping of events for this particular application.

We want to show a message that will list the name of the
event when the occurrence is trapped by the IBEventAlerter
component, so we must include the following code in the
OnEventAlert event handler:

procedure TfrmTestAlert.IBEventAlerter1EventAlert(

Sender: TObject; EventName: string; EventCount: Longint;
var CancelAlerts: Boolean);

begin
MessageDlg('A new record has been posted and the ' +

EventName + ' event was triggered by InterBase',

mtInformation,[mbOk],0);

end;

The sample application is finished. The complete code listing
is shown in Figure 5. Compile and test it; each time you insert
a record, you should receive the dialog box seen in Figure 6.

Conclusion
As you can see, it’s relatively easy to create and register your
own events. Learn to take full advantage of this functionality
in your next Delphi database application. No longer will you
need to code a specified event trapper, or write a slow,
polling application.

implementation

{$R *.DFM}

procedure TfrmTestAlert.IBEventAlter(Sender: TObject)

EventName: string; EventCount: Longint;
var CancelAlerts: Boolean);

begin
MessageDlg('A new record has been posted and the ' +

EventName + ' event was triggered by InterBase',

mtInformation,[mbOk],0);

end;

procedure TfrmTestAlert.FormCreate(Sender: TObject);

begin
IBEventAlerter1.RegisterEvents;

end;

procedure TfrmTestAlert.FormDestroy(Sender: TObject);

begin
IBEventAlerter1.UnregisterEvents;

end;

end.

Figure 5: The UTestAlert.pas file.

Figure 6: This dialog box is displayed each time a record is
inserted.

On the Cover
By combining the IBEventAlerter component with
InterBase events, your systems will benefit from not hav-
ing to poll the database for specified occurrences, leaving
the application more processing power. D

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JUN\DI9706AL.
18 June 1997 Delphi Informant

Alexander Le is a Certified Delphi and InterBase Instructor. He has developed
systems, lead projects, and provided technical training in stand-alone and
Client/Server environments. Alex currently provides Data Warehousing
Architecture and Methodology consulting with Platinum Technology, Inc. When
not immersed in Client/Server tools, Alex rallies for a spot on the cast of
MTV’s “The Real World.” He may be reached at alle@platinum.com.

Donna Burbank is a consultant with the Information Management Consulting
division of Platinum Technology, Inc., specializing in data warehousing solu-
tions. A certified Delphi Client/Server developer, Donna has extensive develop-
ment experience using Delphi 1 and 2, and InterBase. She can be reached at
burbank@platinum.com.

19 June 1997 Delphi Informant

Informant Spotlight
Delphi 3 / COM

By Jim Scammahorn

Interfacing with COM
Delphi 3 Makes Creating COM Objects Easy

Figure 1: A simple server applica
The Component Object Model (COM) is a dynamic tool that allows the
distribution of task-specific objects, not only inside the same address

space of a program running on a single computer, but across address spaces
(multiple programs), or even across machine boundaries. These objects can
interact with each other, via COM interfaces, in such a way as to appear as a
single application, when in reality they are multiple applications running on
multiple machines.
DDE (Dynamic Data Exchange), OLE
(Object Linking and Embedding), ActiveX,
and DCOM are all components of COM,
but COM is not any one of these things; it’s
a much more encompassing concept. COM
allows the building of tools that can be
added to the Delphi Component palette,
brought into a Visual Basic application, or
used by MicroFocus COBOL, as well as
other programming tools. It was once a
Microsoft-specific specification, but was
given to the ActiveX Consortium for
improvement and cross-platform develop-
ment. Most other operating systems have
made — or are making — COM available
on their specific platforms, so that COM
objects will run on Microsoft, UNIX, and
Macintosh platforms in the not-so-distant
future, if not already.

Delphi 3 is, by far, the leader in implement-
ing COM into its available tool sets, allowing

developers to create COM objects
that revolutionize the way we think
about programs and programming.
The most basic concept in COM
development with Delphi 3 is the
COM interface. This article will lead
you through the steps to create a sim-
ple COM interface with Delphi 3.
The concepts provided here can be
built upon to create dynamic, distrib-
utable application solutions.tion.
Interface Construction
The COM interface provides a means to
access attributes and methods contained in an
in-process (.EXE), or out-of-process (.DLL)
server. When a COM interface is accessed
from another process or program, the pro-
gram doing the calling is considered the
client, and the process or program being
called is considered the server.

In the simple model outlined here, the
boundaries of client and server are well laid
out, but as reality comes into play, the
model becomes more complex. As the com-
plexity increases, the concept of which is a
client and which is a server will often
depend on the specific functionality being
discussed. It’s possible, even normal, for the
server of one process to be the client of
another; two processes can interact with
each other as both clients and servers, as
needed. There are six basic steps to building
a COM interface, and these same steps are
repeated for almost all interfaces, regardless
of the complexity of the design.

The first step is to build a program or .DLL
that will act as the server. This server can be
as complex or simple as the overall program
requires. In other words, it could be a basic
form that will develop into a more complex
program as functionality is added, or it
could be an entire subsystem of a large pro-

Informant Spotlight
gram written in Delphi. The example in Figure 1 is a simple
form with three edit boxes. The interface will manipulate
these edit boxes.

The second step is to add the interface to the program. To
do this, select File | New from Delphi’s menu. Then, from
the ActiveX page of the New Items dialog box, select the
Automation Object icon. After the Automation Object is
selected, the Automation Object Wizard appears, as shown
in Figure 2.
Figure 2: The Automation Object Wizard.

Figure 4: The Type Library Editor
tree view.
Instancing
In this dialog box, you provide a name for the interface class,
and select the type of instancing required. The term “instanc-
ing” can be a little confusing at first. It refers to the number
of interfaces that can be created for the server. Perhaps a bet-
ter way of looking at instancing is to determine how many
clients can connect to a single instance of the server object. If
multiple clients will be attaching to a single instance of the
server, then select Multiple Instances. If a one-to-one relation-
ship exists between clients and servers (for every call to the
interface, a new server is created), select Single Instance. This
would be used in SDI (Single Document Interface) applica-
tions, where the user is allowed to view two instances of the
same form with different information on each (two employee
forms with different employees on each, for example).

The Internal instancing interface can only be created inter-
nally, not by any outside application. This can be useful
when an object can be created and used only by the own-
ing object (e.g. an Emergency Contacts object that can be
accessed only via the employee object). Once the two
options are completed, click OK to continue.
20 June 1997 Delphi Informant

Figure 3: The Type Library Editor.
Type Library Editor
The third step involves adding properties and methods to
the type library and the interface object via the Type
Library Editor, which opens when the OK button is clicked
in the Automation Object Wizard. The Type Library
Editor can also be opened by selecting View | Type Library.
The Type Library Editor, shown in Figure 3, is an interface
provided by Delphi 3 to the type library of a particular
project. The type library is a key component of most COM
objects, in which all details of the COM object are defined.

Notice that the name of the type library (shown in the upper-
left corner of Figure 3) is the project name (Server) with a
.tlb extension. The project name is also used as the base for
the tree view. Below the base is the class name that was
entered in the Automation Object Wizard dialog box with
the “I” prefix added (Delphi uses this prefix for interfaces). A
detailed tree view is shown in Figure 4.

The fourth step in building an interface is to add properties
and methods to the interface that are exposed to client
processes. There are three ways to add these.
One way. The first is to
click on the interface
TreeView Node
(IMyInterface, in this
example), then click on
either the Method or
Property toolbar icon. At
this point, a name for
the method or property

can be added in the caption of the new item, just as the
Edit1Text property was added in Figure 4. Next, click on
the Declaration edit box of the property or method’s
Attributes section (see Figure 5). In this edit box, you can
change the declaration of the property or method from the
default (Integer) to the type desired, as well as change a
property to a function, and so on.

Another important aspect that is editable here is the
Property Type. Read / Write is the default, but other types are
Figure 5: The Attributes page of a method or property in an
interface.

Figure 6: The Members page of the interface tabbed notebook.

Informant Spotlight

Figure 8: The Add To Interface dialog box.

Figure 7: When adding a function to the Type Library Editor, the status bar informs you
of problems.
available via the drop-down list. Be aware that properties
and methods can only be of valid COM types. Some of the
common types used instead of the standard Delphi types
are: WideString instead of string; OleVariant instead of
Variant; and WordBool instead of Boolean. I typically use
the OleVariant type, because it inherently provides the con-
version to the Delphi standard types; however, variant
types consume more resources than standard types.
21 June 1997 Delphi Informant
Another way. The second way to add
properties and methods is to select
the Interface Node of the tree view,
then select the Members tab, as
shown in Figure 6.

In the Members page, you can define
properties and methods just as you
would in Delphi. The dispid doesn’t
have to be entered; it will be added
automatically by the Type Library
Editor when the library is saved.
While entering information using
either of these two methods, the sta-
tus bar informs you if an invalid type
is entered, or other problem occurs
(see Figure 7).

Yet another way. The third way of
entering properties and methods into
the type library is from the Delphi
menu. The information entered in
Type Library Editor is automatically
saved in the .TLB file, but to update
the .PAS files, either the Delphi save
file icon on the Delphi tool bar must
be selected, or the Refresh button on
the Type Library Editor tool bar must
be clicked. To enter a property or
method from outside the Type
Library Editor, select Edit | Add To

Interface from the Delphi menu. The
Add To Interface dialog box will be
displayed (see Figure 8).

Properties and methods can be added to
any interface included in this project by
simply choosing which interface, and
entering the definition. If the Syntax

Helper check box is selected, hints for
the syntax will appear as needed. This
functionality is shown in Figure 8. The
appropriate declarations and methods
will be automatically added to the type
library, and to the interface .PAS files.

Saving. After the Type Library Editor is
saved, four new files are created:
1) the .TLB type library file

(Server.tlb in this example),

2) the ProjectName_TLB.dcr Delphi component

resource file (Server_TLB.dcr),
3) the ProjectName_TLB.pas file (Server_TLB.pas), and
4) the Interfacen.PAS file (Interface1.pas in this example),

which the programmer names when it is saved.

The ProjectName_TLB files are generated by Delphi, and
contain all the information the COM system requires. The

Informant Spotlight

Figure 11: The Client program in operation. The third edit box
interface .PAS file is where the interface creator enters code
to perform the desired functionality, and is by default,
named Unitn.pas (n being the next available unit number).
As new methods or properties are added to the type library,
these files are updated automatically.

The fifth step in creating a COM interface is to add code
to the methods that have been automatically added to the
interface .PAS file. If the methods of the interface are refer-
encing controls or objects contained in another unit, then
that unit must be added to the uses statement of the inter-
face unit. So in this example, fmServer1 must be added to
the uses statement of Interface1.pas.
e.

ng

r-

n

n-

is write-only, because the interface is a procedure.

Figure 12: The Automation Warning dialog box.
And running. The sixth and
final step is to run the applica-
tion so the COM interface is
registered in the Windows reg-
istry. The running application is
shown in Figure 9.

The interface can also be reg-
istered via the Register button
on the Type Library Editor
toolbar. Each time changes
are made to the type library, the application should be
reregistered, or the changed functionality may not be
available to client objects.

That’s basically all there is to creating a COM server interfac
The next step is to call that interface from an external pro-
gram, the client.

Client Construction
After creating the server, there really isn’t much to creati
the client. Some events will cause the server to run and
close, and other events will cause the transfer of the info
mation. All these events are up to the programmer.

To open the server, you must first add the
ProjectName_TLB.pas unit from the server to the uses
statement of the unit from which it will be referenced. I
this example, Server_TLB is the unit added to the uses
statement. The ProjectName_TLB unit contains all the
GUIDs (globally unique identifiers) for the COM inter-

Figure 9: Registering the
server application (with
the Windows registry) by ru
ning it.
22 June 1997 Delphi Informant

face, as well as the methods and properties that can be
accessed. In the example client program (Client.dpr), a
separate object does all the communication to the inter-
face (CInterface1.pas). This is by no means mandatory,
but it’s more object-oriented and therefore, more main-
tainable because everything for the COM communication
link is contained in one location. This client interface has

if not Assigned(FCOMServer) then
FCOMServer :=

CreateOleObject(ClassIDToProgID(Class_MyInterface))

as IMyInterface;

Figure 10: Creating an instance of the COM Server Interface
(found in CInterface1.pas).
a private property that tests if there is an interface already
established. If there isn’t an interface, one is created using
the code in Figure 10.

The CreateOleObject and ClassIDToProgID methods are
provided by Delphi. Other properties in the
CInterface1.pas unit transfer information to and from the
server. The resulting client program is shown in Figure 11.

Once the events — and reference properties or methods in
the client interface object — are created, everything is
ready to go. To close the COM interface, you simply
assign the interface variable to nil, which will close the
server. The Windows environment will respond with an
error if the COM server is closed by anything other than
the application that created it. So, as in good object-ori-
ented programming, the object that created the instance is
responsible for freeing the instance. The Delphi environ-
ment gives a meaningful warning (see Figure 12) if the
user attempts to close the server directly, instead of the
Windows standard “Run Time Error 216” dialog box.
That’s about all there is to creating a simple client pro-
gram that uses a COM server, but of course, there are
other considerations.

More on COM
The best location for information on the details of COM
and ways of implementing COM is on Microsoft’s Web
site at http://www.microsoft.com. A search for COM,
DCOM, OLE, or ActiveX on this site will return hundreds
of links to documents that cover just about every aspect of
the Component Object Model. A more organized listing of
COM information is available at Microsoft’s OLE
Development page (http://www.-microsoft.com/oledev/).

Informant Spotlight
The SiteBuilder Network (http://www.microsoft.com/site-
builder/default.htm) also has a lot of information concern-
ing ActiveX and COM technologies, as does the Microsoft
Developer Network (http://www.microsoft.com/msdn/).

COM objects are not restricted to Delphi, or even a single
platform, but can be built using different tools, and dis-
tributed across multiple platforms. The opportunities of a
truly scalable architecture, independent program subsys-
tems, and dynamic maintenance are now available to all of
us. COM is one of the more exciting technologies to come
along in some time, but until the advent of Delphi 3,
quite difficult and time consuming to implement. Delphi
3 makes COM objects truly simple to create. ∆

Important note: This article is based on a prerelease version of
Delphi 3. Features may differ or be absent in the shipping version.

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JUN\DI9706JS.
23 June 1997 Delphi Informant

Jim Scammahorn has been writing business applications and enterprise
solutions in Delphi since shortly after its release, and is currently working for
Berkley Information Services. For six years before that, Jim was a research
programmer at the University of Arkansas College of Engineering under contract
to the U.S. Postal Service, creating image analysis software and hardware
simulations using Borland C++, C, and Turbo C. Jim enjoys sightseeing, camp-
ing, and hiking with his wife and two children. You can contact Jim at
jscammah@ideasign.com.

New Visuals
A Look at Some New Delphi 3 Components

First Look
Delphi 3

By Robert Vivrette

24 June 1997 Delphi Informant

Figure 1: An example of the Spl
D elphi 3 is now a reality, and many of you are no doubt eager to upgrade
to this latest release from Borland. We provided an overview of most of

the new features last month. This article takes a quick look at some of the new
controls available in the Delphi 3 VCL.
Because this “First Look” was prepared
before Delphi 3’s official release, I can’t say
which of these components will be avail-
able in the various flavors of Delphi 3. No
doubt the Client/Server package will have
them all, but some of them — particularly
the database controls — might not be
available in the less expensive packages,
such as the Desktop version.

Splitter
Many of you have probably used various
applications, such as Microsoft Excel, that
allow you to divide the screen into indepen-
dent regions, the size of which are adjustable
by the user. The technique involved here is
the use of what is called a Splitter Bar. Delphi
3 includes this new component, which lets
you adjust the size of two (or more) compo-
nents that have an Align property.
itter component.
In Figure 1 you’ll notice a beveled line
between the StringGrid component on the
left and the TabControl on the right. This is
the Splitter component, and it can be
grabbed and moved from side to side.
Achieving this is simple. First, I placed a
StringGrid on the form and set its Align
property to alLeft. Then I dropped the
Splitter on the form and it “snugged” itself
up against the grid. Last, I dropped the
TabControl on the right and set its Align
property to alClient.

Although Splitter only works with components
that have an Align property, this really isn’t a
restriction. If you need a “splitter” between
two components that don’t have Align, you can
always drop a borderless panel on each side.

The Splitter component also has properties
that allow you to control its width and
beveled appearance, as well as the minimum
distance that the bar will be allowed to go in
either direction.

CheckListBox
The CheckListBox component is simply a
variation on a standard list box control. The
difference is that each item in the list has a
check box associated with it. You gain access to
the checked states of the items by means of the
Checked array property. You can also gray out
individual items with the States array property.

The example in Figure 2 simply fills a nor-
mal list box (on the right) with those items
that have been checked in the CheckListBox

Figure 2: The CheckListBox component in action.

Figure 3: The Animate component can add visual effects to
your applications.

First Look
component on the left. Before the availability of this control,
developers could simulate this kind of behavior by allowing a
list box to have multiple selections. However, forcing a user
to hold down C and/or S while selecting items is
not the best way to accomplish such a straightforward task.

As an added feature, clicking on the list item itself simply
selects the item. To change the state of the check box, you
click only on the check box area. This logical separation of
functions allows you to move through the list with the
mouse, without changing the state of its associated check
box. I have worked with many controls that don’t do this,
and it’s a pleasure to work with one that does it right.

Animate
Every time a user of Windows 95 (and the latest version of
Windows NT) copies a file, or empties the trash can, they see
the new AVI animations built into the operating system.
Now Delphi programmers can work these visual effects into
their applications by means of the Animate component.

In a nutshell, Animate plays .AVI files. However, I believe its
more common use will be to play the operating system
animations. It has a property called CommonAVI that you can
set to any of the values listed in Figure 3. Animate then finds
the animation (in a resource in the operating system) and
plays it. Pretty handy!

The control has properties allowing you to play only selected
frames, as well as to specify the number of loops through the
animation. Those currently using the bulky MediaPlayer con-
trol to play .AVI files will appreciate the more functionally
focused Animate.

DateTimePicker
Modern applications continue to go out of their way to sim-
plify user input. Programs such as Quicken now give you the
option of using a small pop-up calendar to enter a date. Not
only does choosing a date from a pop-up calendar eliminate
typing the date, it eliminates the problem of invalid input.
25 June 1997 Delphi Informant
When a user can enter any number, the application designer
must validate the input. With a component like
DateTimePicker, that validation is built in, so the application
designer can be assured of valid data.

Note that in Figure 4, the DateTimePicker component
looks like a combo box with a date in it. However, when
the down
arrow is
clicked, a
pop-up calen-
dar appears.
The user can
then navigate
months with
the mouse or
keyboard.
Today’s date is
shown circled
in red, and
the selected
day is high-
lighted with a
small, colored
oval. After
selecting the date, the pop-up disappears. There are also
properties that allow you to modify the colors used in the
pop-up calendar.

The DateTimePicker component can also display and edit
time values, but the method of editing is a bit different.
The control has up/down arrows on the right, allowing the
user to increase or decrease the hour, minute, second, or
AM/PM status independently within the field. Keyboard
support is also built in, so you can select the minutes por-
tion of the time and hit the + and - keys to increase and
decrease it appropriately.

DBRichEdit
A while back, I wanted to save RTF data in a BLOB field; I
went through all sorts of fits trying to get it to work.
Wouldn’t you know that as soon as I came up with a solu-

Figure 4: Stay organized with the
DateTimePicker component.

Figure 5: A data-aware version of RichEdit, DBRichEdit lets you
save and restore RTF data in a BLOB field. Figure 6: The properties editor for the Chart component.

First Look

Figure 7: An example of what the Chart component can produce.
tion, Borland went and made a data-aware RichEdit control.
It’s okay, though — I didn’t really like my solution anyway!

DBRichEdit does pretty much what you would expect. It’s a
data-aware version of the RichEdit control. In the example
shown in Figure 5, I tied a memo BLOB field to an RTF
from one of the DBDEMOS tables supplied with Delphi.
Then I added a pop-up menu that set the appropriate
SelAttributes for the RichEdit. Even though the BLOB memo
field in the database was originally plain text, it saved and
restored the RTF data as you would expect.

Chart
Where do I start? Clearly, Chart is one of the more config-
urable controls in the Delphi VCL. Developed by a compa-
ny in Spain, this control’s real name is TeeChart, and it’s
compatible with all versions of Delphi (available in separate
16- and 32-bit versions). Delphi 3 includes both data-
aware and non-data-aware versions of Chart, and informa-
tion is provided in its associated Help file on how to obtain
the Professional versions of both.

Because they’re so highly configurable, Chart and DBChart
can be a bit daunting at first, but you’ll soon be making
charts like a pro. Developers can adjust the graph types
(there are eleven 2D and 3D styles), numbers, line styles,
data points, titles, legends, etc. (see Figure 6). You can even
give the chart a graphic to put on the background (or just
inside the chart), or even create gradient-filled back-
grounds. If you want to see what the chart might look like,
but don’t have the numbers ready, you can have it populat-
ed with random values (see Figure 7).

ToolBar and CoolBar
Perhaps the most interesting of the new Delphi 3 components
are ToolBar and CoolBar. ToolBar is pretty much what you
would expect it to be. It’s a bar that allows you to insert
ToolButtons for easy access to common program functions. The
CoolBar however, is a spin-off of one of the new Microsoft con-
trols available in the latest version of Internet Explorer.
26 June 1997 Delphi Informant
Figure 8 shows a sample Web browser application that
Borland put together. The top portion of the window
shows a CoolBar with four CoolBands. The first band
holds a ToolBar with the Back, Forward, Stop, and Refresh

ToolButtons. The second band holds a combo box defin-
ing the URL that the Web browser is showing. The third
CoolBar is holding an Animate component (the “Cool”
logo). When the browser is connected to the Web, this
AVI animation cycles through its frames to show the
browser is active. A fourth CoolBar holds another
ToolBar/ToolButton combination defining links to com-
mon Web sites.

In case you’re not familiar with the way a CoolBar works,
I’ll run through it briefly. Notice a bevel pattern, indicating
a grab point, on the left side of each CoolBar. The user can
slide these areas back and forth to redefine the amount of
space the CoolBar will occupy. You are not limited to sim-
ply sliding a CoolBar left or right. For example, you can
drag the Address CoolBar down to the area occupied by the
Links CoolBar. The two of them would then share the space
in the second row. This makes it very easy for users to
modify the look and behavior of an application.

Figure 8: The ToolBar and CoolBar components add flexibility
and functionality.

First Look
A CoolBar can hold all sorts of controls; think of it as an
adjustable panel. There’s also a property for setting a back-
ground image (as in the marble texture shown in Figure 8).
The ToolBar component improves application resource
management by allowing you to attach an ImageList com-
ponent to it with all the graphics you’ll be using. Then the
individual ToolButtons that sit on the ToolBar simply ref-
erence a particular button by means of an index into the
ImageList. You can even define buttons that “snap up”
when the mouse passes them.

Conclusion
Hopefully this brief look at some of the new controls in
Delphi 3 will give you an idea of what to expect as you
switch to the new version. Although few of these controls
will completely change the way you program, the enhance-
ments will undoubtedly be appreciated by your users.

Important note: This article is based on a prerelease version of
Delphi 3. Features may differ or be absent in the shipping version.

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JUN\DI9706RV.
27 June 1997 Delphi Informant

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at RobertV@compuserve.com.

28 June 1997 Delphi Informant

Deployment: Part II
Deploying Delphi 2 Applications
with InstallShield Express Professional

In Development
Delphi 2 / InstallShield

By Bill Todd

Figure 1: The New P
If you need more power and flexibility than InstallShield Express (which ships
with Delphi 2) provides, one option is to purchase InstallShield Express

Professional, its commercial big brother.
You’ll find the upgrade easy and intuitive;
both use the same user interface and the same
steps for building your setup. The user inter-
face and basic steps for building a setup were
covered in Part I of this series. This article will
focus on the following additional features of
InstallShield Express Professional:

A printed user’s manual
Support for creating 16-bit Windows 3.x
setups
Support for creating an installation as a
single self-extracting EXE
Support for installing ODBC drivers and
OCX controls
Support for installing the local InterBase
server
Support for internationalized setups
Support for calling functions in DLLs
Support for launching EXEs in the back-
ground
Support for Visual C++, Visual Basic,
Borland C++, Paradox, and Delphi
roject dialog box.
Support for changing system files,
such as WIN.INI, SYSTEM.INI,
PROTOCOL.INI, AUTOEXEC.BAT,
CONFIG.SYS, and application-specific
.INI files
Support for selecting file groups from a
component during a custom installation
An unlimited number of billboard graphics
60 days of free technical support

The first difference I noticed about
InstallShield Express Professional is that it
comes with one of the best user’s manuals I’ve
seen. The manual is as thick as the Delphi 2
User’s Guide, and takes you through each
phase in detail.

16- and/or 32-bit. While InstallShield
Express Professional runs only under
Windows 95 or NT, it will generate both 16-
and 32-bit installation setups. When you start
a new project, the New Project dialog box (see
Figure 1) contains a pair of radio buttons that
allow you to select whether to create a 16- or
32-bit setup. If you have an application that
must be installed under both 16- and 32-bit
operating systems, you will probably want to
create a 16-bit setup and a 32-bit setup. One
reason for this is to ensure that under a 32-bit
operating system, users will have the option to
uninstall the program from the Control
Panel’s Add/Remove Software applet.

English, German, or French. The New
Project dialog box in InstallShield Express
Professional also enables you to select the

Figure 2: The Copy To Floppy dialog box.

Figure 3: The Select InstallShield Objects for Delphi dialog box.

In Development

Figure 4: Installing ODBC drivers.
installation language from a drop-down list. Currently English,
German, and French are available. This list will be expanded in
the next version. All the dialog boxes the user sees during
installation will be in the selected language. In addition,
InstallShield Express Professional will make any necessary lan-
guage changes to the registry entries it creates.

Single-file executables. In addition to creating setup diskettes,
InstallShield Express Professional allows you to create a single
self-installing EXE file. This can be useful if you’re distributing
on bulletin boards, CD-ROM, or from your Web site. This is
also a handy option if you have many network users who need
to install your application or update. Simply create an EXE file
and place it on the file server. Users can then install directly
from the server; no need to distribute diskettes to everyone.
The file can also be password protected.

To create a single-file EXE, select Copy to Floppy (as you
would to make a set of installation diskettes). Next, select Path

for a 1 File Installation from the Drive drop-down list (see
Figure 2). Change the Path to the directory where the setup
file will be created. Finally, enter a Password, if necessary, and
select Copy All Disk Images to create the setup file.

ODBC and Local InterBase installation. In addition to its
ability to install the BDE, SQL Links drivers, and
ReportSmith Runtime, InstallShield Express Professional has
the ability to install ODBC drivers and the Local InterBase
Server. Selecting General Options under Select InstallShield

Objects for Delphi displays the dialog box shown in Figure 3.

Checking the ODBC check box displays the first screen of the
ODBC installation wizard shown in Figure 4. The list of avail-
able ODBC drivers is dynamically built from the drivers
installed on your system. Simply check drivers you want to
install with your application. The ODBC wizard then leads
you through setting the attributes for each driver.

When installing the Local InterBase server, you have three
options. In addition to installing the server, you can install
the Windows and command-line tools for InterBase. If the
target system already has Local InterBase installed, the
29 June 1997 Delphi Informant
InstallShield installation will not overwrite the existing secu-
rity database ISC4.GDB, because this would make the exist-
ing databases on the target machine inaccessible to users.
Your setup can also register any DLL or OCX it installs.

Extensions
As useful as the other features of InstallShield Express
Professional are, by far the most valuable and powerful is
the ability to call functions in a DLL you write and to run
a background EXE as part of the installation process. With
these capabilities you can, as part of the installation, do
anything that you can program.

Any DLL or EXE you call as part of your setup process is
called an extension. To add an extension, click the Express

Extensions button. The Extensions list on the left side of
the Express Extensions dialog box in Figure 5 shows the
extensions that have been added to the setup. The list on
the right includes all the dialog boxes displayed during the
installation process. Clicking the New button to add an
extension displays a dialog box that enables you to tell
Express whether the extension is a DLL or EXE.

Figure 5: The Express Extensions dialog box.

unit Install;

interface

uses
BDE, Windows, DB, SysUtils, FileCtrl;

function SetBDEParams(ISWindow: HWND;

szSourceDir,

szSupportDir,

szInstallDir,

szReserved: PChar): Byte; stdcall;

implementation

function SetBDEParams(ISWindow: HWND;

szSourceDir,

szSupportDir,

szInstallDir,

szReserved: PChar): Byte;

begin
Result := 1;

end;

end.

Figure 6: An Express extension DLL function.

In Development
When? Now that your extension has been added to the
Extensions list, you must indicate at what point in the
installation you want your extension to run. Do this by
selecting the dialog box (in the list on the right) that’s dis-
played before the extension is to be called. Now that you
have added an extension, a Settings tab will be displayed
next to the Ordering tab.

What you see when you click the Settings tab depends on
whether the new extension is a DLL or EXE. For a DLL,
you must enter the name of the DLL, and the name of the
function to call. Express will pass five parameters to the
function:

the window handle of the Express main window
the source directory path
the support directory path (temporary directory for the
installation files)
the installation directory path
a parameter reserved for future use

These parameters give your DLL function access to all the
directories involved in the installation. Your DLL function can
return a value of zero to terminate the installation process, or
any other value to indicate the installation should continue.
Because the manual provides sample 16- and 32-bit DLL func-
tions in C only, Figure 6 shows the shell of a function in a
Delphi DLL that can be called by InstallShield Express
Professional.

Note that for a 32-bit installation, Express expects your exten-
sion DLL routines to use the stdcall directive; and for a 16-bit
installation, you must use the cdecl calling convention.

If your extension is an EXE file, the Settings page prompts
you for the name of the program to run, and any command-
line parameters to pass to the program. You can also check a
check box that instructs InstallShield Express Professional to
wait for the program to terminate before continuing the
installation. However, your program must have a window
handle for this to work.

Where? You can put your extension files in one of three
locations. The first is in the file group with your program
30 June 1997 Delphi Informant
files. This means the extensions will be installed in the
same directory as your program files, and at the same time
as your program files. This also means you cannot run your
extension until your application files are installed, and that
the extension files will not be automatically deleted.

The second alternative is to include your extension files in
Express’ _SETUP.LIB file. If you do this, your extension
files will be copied to the temporary support directory as
the first step in the installation process, and they will be
automatically deleted at the end of the installation.

The third option is to place your extension file in uncom-
pressed form on the first disk of the set. This makes your
extension available before any file-copy operation begins,
but might force the user to swap diskettes if the extension
is called later in the installation.

Conclusion
Using extensions, you can resolve the BDE installation
problems described in Part I of this series. You can call a
DLL function that uses the BDE API function,
DbiOpenCfgInfoList, to set the Local Share property in
the BDE configuration file to True. You can also use it to
examine the value of the Paradox driver’s Net Dir parame-
ter, and — if the value is null — create a subdirectory
below your application’s installation directory and set the
Net Dir path to that directory.

If you find that InstallShield Express for Delphi doesn’t
provide some of the features you need, InstallShield
Express Professional may be the answer. It offers excellent
documentation and a good balance between flexibility and
ease-of-use. Of particular value is the ability to call DLL
functions and run programs in the background as part of
the installation process. This lets you do anything you can
code, at any point during the installation.

In Development
If you have worked with
InstallShield Express for
Delphi, you will find that
you already know how to
use InstallShield Express
Professional. They have
the same interface; the
professional version sim-
ply offers more options.
Because InstallShield Express Professional provides all the
Delphi-specific functionality found in InstallShield Express
for Delphi, you can remove the latter from your hard drive,
and handle all your installations with the former. If
InstallShield Express for Delphi doesn’t meet your needs, I
highly recommend InstallShield Express Professional. ∆

InstallShield Corp.
900 National Parkway, Ste. 125
Schaumburg, IL 60173-5108
Price: US$395
Sales: (800) 374-4353
Phone: (847) 240-9111
E-Mail: info@installshield.com
Web Site: http://www.install-
shield.com
31 June 1997 Delphi Informant

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of Delphi: A Developer’s
Guide [M&T Books, 1995], Delphi 2: A Developer’s Guide [M&T Books, 1996],
and Creating Paradox for Windows Applications [New Riders Publishing, 1994],
and is a member of Team Borland, providing technical support on CompuServe.
He is also a nationally known trainer and has been a speaker at every Borland
Developers Conference and the Borland Conference in London. He can be reached
on the Internet at 71333.2146@compuserve.com or at (602) 802-0178.

32 June 1997 Delphi Informant

Automated Excel
Creating OLE Automation Clients: Part II

Delphi at Work
Delphi 2 / Object Pascal / Excel for Windows / Visual Basic for Applications

By Ian Davies
Last month, we looked at using Microsoft Word as an OLE automation server
from a Delphi 2 application. This month, it’s the turn of Microsoft Excel.
It’s a more complex process to use Excel as an
OLE Automation server than Word, because it
exposes 77 automation objects (in version 5)
compared to the one Word Basic object exposed
by Word 6. However, this provides more power
and flexibility to the client application by offer-
ing a greater degree of control over the server.

As I mentioned last month, it’s important to
remember that although I refer to Excel
specifically in this article, these principles can
be applied to any OLE automation server,
and can be easily converted to suit your
favorite spreadsheet provided that it supports
OLE automation.

Excel’s Object Hierarchy
You can think of objects in Excel as being
similar to those in Delphi’s VCL, in that they
can have properties, methods, and events.
The top object in the hierarchy is the
Application object, which acts as a parent to
all other objects, similar to Delphi’s TObject.
Excel provides external applications (i.e. those
accessing objects using OLE automation) a
direct interface to three of its objects — the
Application, Chart, and Worksheet objects —
with all other objects being accessed via these.
Because the Application object is the ancestor
of all other objects, you can access the Chart
object, for example, via the Application object
rather than directly, if you want.

Excel’s object hierarchy also makes exten-
sive use of collections. The concept of a
collection is similar to a Pascal record; a
group of related objects can be referenced
as a whole or individually. For example,
the workbooks collection contains a list of
all open workbooks, and can be referenced
as a whole (e.g. Workbooks.Close to close
all open workbooks), or individually (e.g.
Workbooks[2].Close to close only the
second workbook in the collection).

Discussing every Excel object is beyond the
scope of this article. We’ll focus on the
objects relevant to implementing the fun-
damental operations performed when using
a spreadsheet.

Fundamental Principles
Here’s a brief introduction to manipulating
the Excel objects that an OLE automation
programmer commonly works with. An
application can contain many workbooks,

Delphi at Work
and each workbook can contain many worksheets. An OLE
automation session is initiated with the Application object:

xlApplication := CreateOLEObject('Excel.Application');

where xlApplication is a Variant declared to hold the
instance data of the Automation object. No workbooks or
worksheets are initially loaded; you have to do that yourself.

To create a new, blank workbook, call the Add method of the
Workbooks object:

xlApplication.WorkBooks.Add;

This will create a new workbook with the default number of
worksheets (normally 16); alternatively, you could use the
Open method to open a file that already exists.

Two properties of the Application object are
ActiveWorkbook and ActiveSheet, which return a reference
to the active workbook and active worksheet, respectively.
Worksheets other than the active one can be referenced,
but must be fully qualified:

xlApplication.Worksheets['Sheet1'].

Cells[5,3].Font.Size := 14;

As you can see, the worksheets collection has a Cells method,
which returns an object (of type Range) referenced by its
parameter, in this case the fifth row and the third column
(cell C5). The Range method also returns an object (of type
Range) which can be used to specify a contiguous block of
cells. For example, this statement sets the font to 14 point for
every cell comprising the range A1:F10:

xlApplication.Worksheets['Sheet1'].

Range['A1:F10'].Font.Size := 14;

The Range object (which includes the Cells object of type
Range) can be used to modify the contents of individual
cells or groups of cells through the use of the Formula or
Value properties. This statement, for example:

xlApplication.Range['A1:H8'].Formula := '=rand()';

fills the cells between A1 and H8 on the current worksheet,
with the Excel function that generates random numbers.
Since no explicit worksheet is named, the current (active)
worksheet is implied. The current worksheet can be changed
by calling the Activate method of the Sheets collection,
indexed either with a name:

xlApplication.Sheets['Sheet2'].Activate;

or a reference:

xlApplication.Sheets[3].Activate;

The current workbook can be changed in the same way:

xlApplication.Workbooks['MySheet.xls'].Activate;
33 June 1997 Delphi Informant
Excel macros written in Visual Basic for Applications (VBA)
language can be executed by calling the Run method of the
Application object:

xlApplication.Run['MacroName'];

As stated previously, when Excel is initiated as an OLE
automation server, it’s hidden from the user by default.
You can control its visibility with the Application object’s
Visible property:

xlApplication.Visible := True;

For further information on these and other features provided
by VBA, the VBA_XL.HLP file provided with Excel is an
excellent place to start. Also, using Excel’s macro recorder
facility provides a head-start in determining which objects are
used for which purpose.

A Functional Example
Let’s look at another example. This example creates a new work-
book, inserts a formula that accesses an Excel function, and dis-
plays the result. The function we’ll use calculates the future value
of an investment, when given various details about the invest-
ment. Excel’s FV (future value) function takes five parameters:

=FV(InterestRatePerPeriod, NumberOfPeriods,

PeriodicInvestment, LumpSumInvestment, PaymentDate)

Create a new
Delphi project,
and place five
Label compo-
nents, five Edit
components,
two
RadioButton
components,
and a Button
component on
the form, as
shown in
Figure 1. Next,
declare a
Variant called
xlApplication as
a public to the form which will be used to store the
instance data of the Automation object:

public
{ Public declarations }
xlApplication: Variant;

Because we’re using OLE automation, we also need to add the
OLEAuto unit to the form’s uses clause.

We’ll create the Automation object in the FormCreate method.
This will result in Excel being loaded into memory, but remain-
ing hidden from view. The object will be unloaded and freed in
the FormDestroy method. Both methods are shown in Figure 2.

Figure 1: The demonstration form.

procedure TMainForm.FormCreate(Sender: TObject);

begin
try

// Attempt to create an OLE Automation link with
// Excel and store its instance data in the
// xlApplication variant.
xlApplication := CreateOLEObject('Excel.Application');

except
MessageDlg('Could not start Excel',mtError,[mbOK],0);

end;
end;

procedure TMainForm.FormDestroy(Sender: TObject);

begin
try

xlApplication.Quit; // Quit Excel.
except

MessageDlg('Could not unload the server',

mtError,[mbOK],0);

end;

// Free the variable holding the instance data of Excel.
xlApplication:=unAssigned;

end;

Figure 2: The form’s OnCreate and OnDestroy methods.

Delphi at Work

Figure 3: Estimating the future value
of an investment using Excel.
To send the function to Excel, it must first be built into a
string variable based on the values of the edit boxes and
the radio buttons. I’ve implemented this using Delphi’s
Concat function:

// Build the Excel FV function.
FuncString := Concat(

'=FV(', // Formula preceded by '='
FloatToStr(IntRate), ', ', // Interest rate
IntToStr(NoPayments), ', ', // Number of payments
Edit4.Text, ', ', // Payment amount
Edit5.Text, ', ', // Initial investment
')');

This simply adds the values of the relevant components to the
FuncString variable in the format expected by Excel.

Before the function can be passed to Excel, a new workbook
must be temporarily created to hold it. The Add method of the
Workbooks object is called to achieve this:

xlApplication.WorkBooks.Add;

The string containing the function is then assigned to the
Formula property of the Cells collection of the active sheet:

xlApplication.ActiveSheet.Cells[1,1].Formula := FuncString;

where it’s immediately evaluated. The result is read back, by
examining the relevant cell’s Value property:

InvestValue :=

StrToFloat(xlApplication.ActiveSheet.Cells[1,1].Value);

This is a simple function that would be straightforward to create
in Delphi, thereby removing the overhead of using Excel.
However, rather than creating a new workbook to hold your
temporary functions, you could open a previously prepared
workbook that may contain many, considerably more complicat-
ed, functions. Values could then be passed to this workbook,
34 June 1997 Delphi Informant
and the results, which may now be difficult or impractical to
recreate in Delphi, can be retrieved in exactly the same way as in
this example. We’re simply using Excel to do what it does best.

In Figure 3, the initial investment is shown as a negative fig-
ure, because it indicates an outgoing cash transaction. The
result, however, is a positive figure, because it’s the projected
income received from the investment.

Leveraging Excel Pivot Tables from Delphi
Pivot tables, available in Excel 5 and later, provide a
dynamic view of a list of data that a user can interact with
to produce customized summaries. A pivot table consists
of a number of fields that can be classed as either data
fields, row fields, column fields, or page fields. Data fields
contain the data to be summarized (using all the standard
summary operators, such as sum, count, etc.); row fields
summarize the data in that field extending down the page;
column fields summarize the data in that field extending
across the page; and page fields allow the user to apply a
filter to the information summarized in the table.

As a demonstration, we’ll summarize the MASTER.DBF
table (a dBASE table) provided with Delphi 1 and 2,
which is available as part of the DBDEMOS examples.
This table is used by the Stocks demo in Delphi 1, and
contains various details concerning the sale and purchase
of shares in various fictitious companies. This table will be
opened in Excel, and a pivot table will be created based on
it. By manipulating the fields in the pivot table, we will be
able to identify the total value of shares per investment
rating, the total value for each risk band allocated, and the
total value broken down between the two. The operations
will be performed in Excel, and the results will be read
back into our Delphi application and displayed in a
StringGrid component (see Figure 4).

Delphi at Work

Figure 4: The Pivot Table example in design mode. Figure 5: Results of an operation on an Excel pivot table.
The link to Excel is established in the OnCreate event of
the form, followed by a call to the Open method of the
Excel Worksheet object to open the MASTER.DBF table.
The pivot table is created by calling the Pivot Table
Wizard, and passing various parameters concerning the
layout and position of the source and destination tables:

xlApplication.Sheets['Sheet1'].PivotTableWizard[

SourceType := xlDatabase,

SourceData :='Database',

TableDestination :='R3C1',

TableName := 'PivotTable1'];

Contained on our main form are three SpeedButton com-
ponents which are used to send the relevant instructions to
Excel to manipulate the pivot table. This is achieved by
changing the orientation of the relevant fields:

xlApplication.Sheets['Sheet1'].PivotTables['PivotTable1'].

PivotFields['RISK'].Orientation := xlPageField;

xlApplication.Sheets['Sheet1'].PivotTables['PivotTable1'].

PivotFields['RATING'].Orientation := xlRowField;

The first line removes the RISK field from the pivot table, and
redeclares it as a page field, which is being used in this
instance as a temporary holding area. The orientation of the
RATING field is changed into a row field, thereby generating
a summary based on each unique value contained in the
RATING field. The results produced are shown in Figure 5.
The other buttons simply contain different combinations of
page, row, and column fields to display the appropriate summary.

The Possibilities
This is a simple example based on a simple table, the
results of which can easily be recreated in SQL. However,
the main benefit of pivot tables is that they offer the user a
means of interactively manipulating the views, and there-
fore, the behavior of the data in the table. By removing
35 June 1997 Delphi Informant
Excel’s toolbars, status bar, and formula bar, and modify-
ing the title in the title bar, a pivot table can be made visi-
ble and presented to the user as a seamless part of your
application. Excel could be exposed as a rather clever dia-
log box that appears as an integral part of your application,
giving the impression that a great deal of time and effort
has gone into its creation when, in reality, all that’s
involved is a few simple OLE automation calls to a pre-
defined series of objects.

There’s incredible potential for manipulating and cus-
tomizing Excel through its OLE automation interface.
You’re able to change practically every aspect of Excel’s
appearance to suit your needs. Whether you choose to dis-
play Excel to your users and allow them to interact with it
directly (and retrieve the results using OLE automation
into Delphi), or whether you communicate entirely
through code, Excel and VBA provide you with the tools
necessary to complete the job.

That’s it for this month. In the next — and final — part
of this series, I’ll cover how to use Microsoft Access, and
the various components of its databases, from a Delphi
application. D

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JUN\DI9706ID.

Ian Davies is a developer of 16- and 32-bit applications for the Inland
Revenue in the UK. He began Windows programming using Visual Basic about
four years ago, but has seen the light and is now a devout Delphi addict.
Current interests include Internet and intranet development, inter-application
communication, and sometimes a combination of the two. Ian can be contact-
ed via e-mail at 106003.3317@compuserve.com.

36 June 1997 Delphi Informant

Columns & Rows
Paradox / BDE / Delphi

By Dan Ehrmann

The Paradox Files: Part III
Understanding Primary and Secondary Indexes
As I said last month, Delphi developers use the Paradox file format every day,
yet the Delphi documentation offers little information about it. To help fill

that gap, the first two articles in this series explored the internals of Paradox table
(.DB) files: table structure, record and block management, field types, and record
size calculation. In this article, we’ll examine primary and secondary indexes.
The Paradox Index
An index is a sorted list. When you create
an index on a Paradox table, the BDE cre-
ates a separate file containing the value of
that field for every record, including dupli-
cates. These values are sorted in alphabeti-
cal or numeric order. (Dates and times are
stored internally, as numbers.) The BDE
also includes a pointer to that value’s actual
position in the table.
Figure 1 shows entries in a Code field, list-
ed in no particular order. An index main-
tains a sorted list of these codes, together
with a pointer to the record’s position in
the table.
If your
program
asks the
BDE to
find a
particular
value,
and an
index
exists on
the field,
the BDE
uses the
index to
locate the
value in
its sorted
position,
then reads the pointer to find the actual
position in the table.

The BDE uses a simple binary search to
locate a value within the sorted list; by suc-
cessively halving the sorted list — and
eliminating the half where the value could
not be — it “zeroes in” on the desired value
very quickly. This exponential series is gov-
erned by the formula:

2n – 1 = size of list

Figure 1: The BDE uses the index
to locate the record’s position.

Columns & Rows
where n is the worst-case number of jumps the BDE will
need to find any entry. (In half the attempts, a specific
entry is found in fewer than n jumps.) There are other
strategies for indexing data, including domain-based algo-
rithms that attempt to use specifics about the data, but the
Paradox file format uses none of these.

The Primary Index
In the relational model, a Primary Key is one or more
fields which, when considered together, define the unique-
ness of a record. Even if you need multiple fields to guar-
antee uniqueness, there is only one Primary Key in the
table, considered to be a concatenation of all these fields.
Primary Keys are often used to locate a record. They also
frequently appear as Foreign Key fields in other tables,
serving to link the tables.

Because Primary Keys play such an important role, the
BDE places an index on the Primary Key of a Paradox
table, and calls this the Primary Index. Stored in the .PX
file that is part of the table’s “family,” the Primary Index is
a little different from other indexes, in that it doesn’t
include an entry for every record in the table.

As you saw in the first article of this series, the Paradox
file format will store a minimum of three records per
block if the table has a Primary Key. Based on the record
size, a typical table may have tens of records per block,
and within the block, these records are always maintained
in Primary Key order.

To keep the Primary Index as small as possible, the BDE
stores the value of the complete Primary Key for only the
first record in each block. When the BDE is searching for a
record, it will locate the block where that record is stored
— by finding the largest value in the list that doesn’t
exceed the value for which it’s searching. This value
defines the first record in the block where the desired
record is stored. From there, the BDE has only to check
the Primary Key for each record in the block — and this is
done sequentially.

Another approach is to think of the Paradox Primary Index as
a two-level B-tree (see Figure 2). Because this is a tree struc-
ture, the leaf nodes at each level must be kept in sorted order.
In the Paradox format, the top-level nodes are the values at
the beginning of each block. These effectively point to the
records, starting with the indexed one, and finishing with the
record just before the next indexed one.
37 June 1997 Delphi Informant

Figure 2: The Paradox Primary Index is a two-level B-tree.
The Paradox file format is formally known as a clustered index
format, where the indexed values are physically stored in sort-
ed order. This is why you can have only one clustered index
per table. By way of comparison, in a dBASE file format
index, or a Paradox secondary index (described later), nodes
of the lowest level are pointers to individual records. The
records can be arranged in any order, and many such indexes
can occupy a single table. The downside, of course, is that the
index is much larger. This is because it’s storing every value,
together with the pointers to each value’s actual position.

The Paradox approach provides two especially important
advantages in database structures:
1) The clustered index is smaller than a

non-clustered index, because the lowest
and most populous level has been
eliminated (one index entry per
record). Therefore, more of the index
can be held in memory, and searching
is faster — especially in larger tables.

2) Records with adjacent key values are stored physically
close to each other, and often on the same block. This
means that retrieving a range of records with adjacent
keys is faster, because fewer disk reads are necessary.

Other database formats extend the concept of B-trees to
multiple levels, obtaining benefits that can be enormous. A
Paradox Primary Index uses only one level.

The relational model allows any field or fields in the table,
even non-contiguous ones, to constitute the Primary Key.
The Paradox file format places the fields in the Primary Key
at the beginning of the table to simplify the searching and
positioning algorithms. This is not a significant limitation,
however, since you can place these fields in any order on a
Delphi form, using the edit, grid, or other control types.

The Paradox file format also does not allow Logical,
Memo, Formatted Memo, Graphic, OLE, Binary, or Byte
fields to be included in the Primary Key (or in secondary
indexes.) These field types are either too small (Logical) or
too large (Memo) to be indexed, or contain binary data
that cannot be indexed.

If you need to include more than three or four fields in the
Primary Key to guarantee uniqueness across all fields, consid-
er adding an ID field to the beginning of the table, and using
this as the Primary Key. The other fields are then considered
to be attributes of the Primary Key, helping to describe it.

Secondary Indexes
There are many times when
you need to perform opera-
tions on fields other than
the Primary Key of a table.
For example, when you use
the Primary Key of one
table as a linking field in

Columns & Rows
another table, this is known as a Foreign Key, and is often
used for searching and queries. Most tables contain other
code or categorization fields, used to slice-and-dice, or
organize the table in different ways. These fields also often
appear in filters and SQL WHERE, ORDER BY, and
GROUP BY clauses.

The Paradox file format provides a way to manually place
an index on these fields as well, to speed up these searching
and filtering operations. Paradox secondary indexes can be:

single or multi-field;
ascending, descending, or mixed;
case-sensitive or case-insensitive;
unique across all values, or with duplicates allowed; and
automatically and incrementally maintained by the
BDE, or not.

The type of index you place depends on what you want the
index to do, and on the type of data being indexed.

Secondary indexes are stored in two files with the exten-
sions .Xnn and .Ynn. (As with all Paradox family members,
you control the filename, and the BDE controls the exten-
sion.) The purpose of the .X and .Y files, and the nn num-
bering scheme, will be explained later.

Internally, the .Xnn file is just another table. This makes sense
when you consider that the BDE code to open and navigate
Paradox tables is likely to be highly optimized, and very fast.
In fact, in early versions of Paradox, you used to be able to
copy this file to a new name with a .DB extension, then open
it as a table! (Unfortunately, this trick no longer works.)

Maintained vs. Non-Maintained Indexes
With a maintained index, whenever you make a change to
the data being indexed — by adding or deleting a row, or
by updating the indexed field for an existing row — the
BDE automatically updates the index as well, keeping it
fully synchronized with the table. When you perform an
operation that would benefit from the index, it’s ready
with no delay.

With a non-maintained index, when you make a change to
the data being indexed, the BDE immediately flags the
index as being out-of-date. When you perform an opera-
tion that would benefit from the index, the BDE must
first rebuild the index to make it current. Although they’ve
been part of the Paradox file format for more than 12
years, non-maintained secondary indexes are now regarded
as obsolete. They were a response to the limitations of
hardware and operating systems of the time. Note that a
unique index cannot be defined as non-maintained. To
enforce the uniqueness constraint, the index must be
incrementally maintained.

Table Levels and Index Naming Schemes
As you may recall from the first article in this series,
Paradox tables have a “level” associated with them in the
38 June 1997 Delphi Informant
BDE. This level corresponds to features that have been
added to the format over the years.

Before Level 4, Paradox secondary indexes could be only
single-field, ascending, case-sensitive, and non-unique.
(Only the index placed on the Primary Key continues to
have a uniqueness constraint.) Because of the close link
between a field and an index on that field, the original ver-
sion of Paradox used a simple naming scheme for the .Xnn
and .Ynn files for such indexes: nn is a hexadecimal number
— from 01 to FF, inclusive — that matches the field num-
ber. Because tables can have a maximum of 255 fields, this
scheme allows for such an index to be defined on any — or
even every — field of the table.

For example, if you place a single-field, ascending, case-
sensitive, and non-unique index on the third field of your
table, the BDE will generate the following two files to hold
the index: .X03 and .Y03. If the index is on the fourteenth
field, the files are named .X0E and .Y0E.

In the Paradox file format, a secondary index must also have
a name. For a single-field, ascending, case-sensitive, and
non-unique index, the BDE assumes that the index name is
the same as the field name. If any of these conditions are
not true, you must provide a different name, which must
follow the same naming conventions as a field (see Part II of
this series), but which cannot be the same as a field name.

With Level 4, the BDE added support for multi-field and
case-insensitive indexes. With Level 7, the BDE added
support for the uniqueness constraint, and for individual
fields to be sorted in an ascending or descending order
within the index.

With these new index types, Borland needed a new nam-
ing scheme for secondary indexes, to maintain the unique
filenames for each index. If an index is placed on multiple
fields, or if it’s descending, or in a mixed order, or case-
insensitive, or unique, or any combination of these
options, nn will be a sequential value starting from G0,
and incrementing using a pseudo-hexadecimal scheme.

For example, the .Xnn and .Ynn files for the first 16 of the
newer-style indexes will be numbered G0 through GF, and
the one that follows will be numbered H0. Numbers are
not reused. If you delete the index numbered G5, the next
newer-style index will still be numbered H1. Each index
will also have a name that you define.

A Note about Descending Indexes
The Paradox file format allows for a multi-field index to have
each field sorted in ascending or descending order.
Unfortunately, Delphi doesn’t give you a way to create such
an index, nor can you test for one using the TTable.IndexDefs
methods. When you create an index using the Database
Desktop, the Descending option is a check box that applies to

Columns & Rows
all fields in the index, not each field individually. The
TIndexOptions set object contains an ixDescending property
that also applies to the whole index.

Interestingly, if you use the original Paradox product to
create or restructure a table, the index definition dialog box
allows you to set the index sort order on a field-by-field
basis. Furthermore, Delphi’s Database Explorer also shows
the sort order for each field. It’s unfortunate that the file
format’s full functionality hasn’t surfaced in this instance.

Structure of the Secondary Index Files
Earlier in this article, I mentioned that the .Xnn file is actu-
ally a Paradox table. The structure of this table tells us a lot
about how secondary indexes work. Figure 3 shows the
structure of the .Xnn table for a maintained secondary
index. The Secondary Key field contains the values being
indexed. If more than one field is indexed, Secondary Key is
a concatenation of the fields. For a case-insensitive index,
these values are converted to upper case. Next, the .Xnn
table contains a field for each field in the table’s Primary
Key, where the indexed value is to be found.

Finally, the Hint field contains the physical block number in
the base table where this Primary Key can be found. This
value is not maintained incrementally; it’s updated only when
the table is restructured and the indexes are rebuilt. If there
have been no changes, the BDE can use the Hint field to
speed up the process even further, by jumping directly to the
block in question. The only process that renders the Hint
column obsolete is a block split — and even then, only for
those records moved to the new block.

Figure 4 shows the structure of the .Xnn table for a non-main-
tained secondary index. Remember that with a non-maintained
index, the BDE cannot guarantee that the table will have a
Primary Key. As with a maintained index, the Secondary Key
field contains the values being indexed. The Tup No field con-
tains the physical record number where this indexed value can
be found. Blk Num contains the physical block number where
this record can be found, while Tup Offset contains the byte
offset from the beginning of the block where the record can be
found. The BDE can use this information to jump immediately
to the record, as long as it knows the table hasn’t been changed
since the index was refreshed.

In both cases, values in the Secondary Key field may not
be unique. The .Xnn table in each case is keyed on its ini-

Figure 3: Structure of the .Xnn “table” for a maintained index.

Secondary Key Primary Key Columns Hint

Figure 4: Structure of the .Xnn “table” for a non-
maintained index.

Secondary Key Tup No Blk Num Tup Offset
39 June 1997 Delphi Informant
tial fields (indicated by the asterisks in each table) because
it’s already sorted, and because this allows a Primary Index
to be used for further optimization. And where is this
Primary Index stored? Why, in the .Ynn file! Think of the
relationship between the .Xnn and the .Ynn files as being
the same as between the .DB and .PX files.

The .Xnn file is usually much larger than the .PX file, and in
some tables, it may even be larger than the .DB file itself. This
is because the .Xnn table contains an entry for every record in
the table, whereas the .PX file lists only the first record in each
block. The .Ynn file, on the other hand, is always small,
because it contains only the Primary Key values for the first
record in each block of the .Xnn table, and this is almost
always a narrow table with many “records” in each block.

The fact that each maintained secondary index also contains
the complete Primary Key of the table is one strong reason
for keeping the Primary Key as short as possible — ideally,
only one field.

How a Secondary Index Works
Suppose you place a Query component on a form, and bind
DataSource and DBGrid components to it. To show all cus-
tomers located in Canada, you would specify the following
expression in the Query’s SQL property:

SELECT * FROM Customer WHERE Country = "Canada"

Keep in mind that Canadian customers are likely to be scat-
tered throughout the Customer table. But if you have a
maintained secondary index on the Country field, the BDE
will use it for a query such as this. The BDE performs the
following steps to extract matching records:
1) It opens the .Ynn file for this index, and uses it like a .PX

to find the starting block in the .Xnn file containing the
“Canada” entries. (This operation is performed using a
simple binary search.)

2) It jumps to the indicated block in the .Xnn file, then
sequentially reads through the records in that block until
it finds the first “Canada” entry.

3) It then sequentially reads each record in the .Xnn file
until it reaches a record where the Secondary Key field is
not “Canada”.

4) For each matching entry found, it reads the Primary Key
information for the table from the second and subsequent
fields of the .Xnn file. It also reads the value in the Hint
column.

5) The BDE then jumps to the block indicated by the Hint
column, and reads sequentially through this block for the
desired record.

6) If the record isn’t found in that block, it reads the .PX
file, using a simple binary search to locate the block in
the .DB containing that Primary Key. It then jumps to
this block in the .DB file, and reads it sequentially until
the record is found.

7) Finally, this record is fetched, and displayed in the grid.
This process is harder to describe than to perform. The

Figure 5: The Paradox index lister.

Columns & Rows

Dan Ehrmann is the founder and President of Kallista, Inc., a database and
Internet consulting firm based in Chicago. He is the author of two books on
Paradox, and a member of Team Borland and Corel’s CTech. Dan was the
Chairman of the Advisory Board for Borland’s first Paradox conference, which
evolved into the current BDC. He has worked with the Paradox file format for more
than 10 years. He can be reached via e-mail at dan@kallista.com.
BDE can execute this sequence of steps far more quickly
than if it had to search sequentially through a large file,
and the benefits increase exponentially as the table size
increases.

Using Keys and Indexes in Delphi
Indexes are used transparently by the BDE for Paradox
tables, when you invoke a method that would benefit from
the index. By default, a table is opened in Primary Key
order. (This is analogous to saying that the Primary Index
is used to order a newly opened table.) You can change the
index by using the IndexName property. (The
GetIndexNames method populates a TStrings list with the
names of available indexes.) Setting this property to null
switches the table back to Primary Key order.

There is no TTable.IsKeyed property that you can test.
Instead, to determine if a table is keyed, use the following
code, which counts the number of fields in the index
when the Primary Key is the current table order:

var
IsKeyed: Boolean;

...

TTable.IndexName := '';

IsKeyed := TTable.IndexFieldCount > 0;

Table bookmarks use the Primary Key automatically. When
you set a bookmark on a table, Delphi defines a buffer to
hold that record’s Primary Key. When you issue a
GotoBookmark method call, the BDE performs a “Locate”
on the Primary Key to position the current record pointer.

Certain TTable methods perform significantly faster with
the appropriate indexes. These include the Filter property,
the ApplyRange method, various “find” methods (GoToKey,
GoToNearest, FindKey, FindNearest, FindFirst, FindNext,
FindPrior, and FindLast), and the Locate and Lookup meth-
ods. You should specify options for these methods to match
available indexes on the table.

Indexes can be dynamically added to a table by using
TTable.AddIndex. This method provides the parameter set by
TIndexOptions to control whether the index created is prima-
ry or secondary — and for secondary indexes, the unique-
ness, sorting and case-sensitivity options. (Indexes created
using AddIndex are always maintained.) The matching
DeleteIndex method allows you to delete a named secondary
index with exclusive access to the table.

You must be careful defining indexes for use with Query
components. In Delphi 1, queries were processed internally
by a QBE-based parser, whether or not they were formulat-
ed as QBE or SQL. This parser, which still exists in the 32-
bit BDE, can use only single-field, ascending, and main-
tained indexes, the original type that used the field name
for the index name. (The original version of the QBE parser
used only case-sensitive indexes, but newer 32-bit versions
of the BDE also recognize the case-insensitive variety.)
40 June 1997 Delphi Informant
Starting with Delphi 2, SQL-based queries are now
processed by a new SQL-based parser that will use any
available index, no matter how it’s defined.

The Index Lister
Figure 5 shows a screen shot of a sample application that
lists the indexes for a specified Paradox table. It shows the
field structure of each index, together with Case
Insensitive, Unique, and Descending properties.

As I noted previously, native Delphi VCL methods offer
no way to determine if an index is maintained or non-
maintained, or if the individual fields have descending
sorts. This information is available from the BDE API, but
API-level programming is beyond the scope of this series.

The application’s source code makes extensive use of the
TIndexDef and TIndexOptions object types, which docu-
ment most of what we need to know about an index. It
also demonstrates one possible technique for breaking up
the contents of the TIndexDef.Fields property into the
individual index fields.

Next Time
The next article in this series will explore validity checks,
which are simple business rules enforced at the table level.
It will also discuss how the format implements referential
integrity, i.e. the ability to maintain links between fields
that appear in two or more tables. ∆

The sample application referenced in this article is available
on the Delphi Informant Works CD located in
INFORM\97\JUN\DI9706DE.

41 June 1997 Delphi Informant

DBNavigator
Delphi 2 / Delphi 3

By Cary Jensen, Ph.D.

Cached Updates: Part II
Improving the UI and Updating Your SQL

Figure 1: The main form of CA
enhance the user interface with
Part I of this series introduced the use of cached updates in 32-bit Delphi.
This month’s installment continues this discussion with a look at how to

improve your user interface using cached updates, and how to use the
UpdateSQL component and UpdateSQL Editor.
A Recap
Cached updates are a mechanism by which
all changes made to a DataSet are stored
locally, then applied simultaneously using
the ApplyUpdates method of either a DataSet
or Database component. The primary differ-
ence between these two methods is the
Database’s ApplyUpdates applies updates to
one or more DataSets within a transaction.
This method also encapsulates a call to
CommitUpdates to empty the cache after the
edits have been applied. By comparison, if
you use the DataSet’s ApplyUpdates, you
must start, commit, or roll back your own
transaction, as well as make an explicit call to
CHE3.DPR. This project demonstrates how to
 cached updates.
CommitUpdates. Regard-less of the
ApplyUpdates method you call, a DataSet
remains in Cached Updates mode following
the call to ApplyUpdates.

Cached updates are enabled by setting a
DataSet’s CachedUpdates property to True.
Cached edits are not applied to the corre-
sponding DataSet unless they are specifically
applied. Closing a table, or setting
CachedUpdates to False, without actually
applying the updates, cancels all cached edits.

Using cached updates affords four primary
advantages:
1) decreased network traffic,
2) increased performance,
3) more user interface options, and
4) greater programmatic control over posting

individual records.

Enhanced User Interface Options
As mentioned last month, one advantage of
using cached updates is you can offer more
options to users for viewing their edits.
These options include allowing the user to:
see edited records, preview only edited
records (even deleted records), revert edited
records to their original states, and see the
pre-edited values of individual fields.
Let’s discuss how to provide these features.

Controlling record views. With cached
updates enabled, you can control a user’s
access to specific records using the DataSet’s

Figure 2: The OnClick event for the Show Cached Edits button.

procedure TForm1.Button3Click(Sender: TObject);

begin
if not Table1.CachedUpdates then

raise ENotCaching.Create('Not caching updates');

if not Table1.UpdatesPending then
raise ENoPendingEdits.Create('No edits in the cache');

Form2 := TForm2.Create(Self);

Table1.UpdateRecordTypes :=

[rtModified, rtInserted, rtDeleted];

try
Form2.ShowModal;

Form2.Release;

finally
Table1.UpdateRecordTypes :=

[rtInserted, rtModified, rtUnModified];

end;
end;

Figure 3: Form2 of CACHE3.DPR can be used to display pending
edits in the cache, including those records that have been “deleted.”

DBNAVIGATOR

Figure 4: Calling the UpdateStatus method if Table1 caches
updates, to avoid raising exceptions.

procedure TForm1.Table1CalcFields(DataSet: TDataSet);

begin
if Table1.CachedUpdates then

case Table1.UpdateStatus of
usUnmodified : Table1UpdateStatus.Value := 'Unmodified';

usModified : Table1UpdateStatus.Value := 'Modified';

usInserted : Table1UpdateStatus.Value := 'Inserted';

usDeleted : Table1UpdateStatus.Value := 'Deleted';

end;
end;
UpdateRecordTypes property. A set property, UpdateRecordTypes
can accept zero, one, or more of these flags: rtModified,
rtInserted, rtDeleted, and rtUnModified. These flags are defined
by the TUpdateRecordTypes type. For example, to display only
modified records to the user, use a statement such as:

Table1.UpdateRecordTypes := [rtModified];

To display all records in the cache, including those scheduled
for deletion, use:

Table1.UpdateRecordTypes :=

[rtModified, rtInserted, rtDeleted];

The default set for UpdateRecordTypes contains the flags,
rtInserted, rtDeleted, and rtUnModified.

(Note: At the time of this writing, TUpdateRecordTypes
was declared in the DBTables unit of Delphi 3 (pre-
release), but in the DB unit of Delphi 2. If you use one of
the flags defined by TUpdateRecordTypes, and receive a
compiler error, make sure you have included the appropri-
ate unit in your uses clause.)

The use of UpdateRecordTypes is demonstrated in
CACHE3.DPR (see Figure 1). This project allows a user to
display any edits to records, before committing the updates.
These edits are displayed on a second form — Form2. When
the user clicks the Show Cached Edits button, the button’s
event handler creates Form2, sets the UpdateRecordTypes
property of Table1 to display all cached edits, then displays
Form2 (see Figure 2). Incidentally, Form2 uses the unit for
Form1. This is how the DBGrid on Form2 (see Figure 3) can
display records cached by Table1, located on Form1.

The event handler in Figure 2 uses two custom exceptions to
simplify the code. If Table1 is not caching edits, an
ENotCaching exception is raised. If no edits are currently in
the cache, an ENoPendingEdits exception is raised.
Otherwise, Form2 is created, Table1’s UpdateRecordTypes is
set to display all cached edits, then Form2 is displayed
modally. After Form2 closes, it’s released. Finally,
UpdateRecordTypes is reset to its default value.

Here’s the declaration of the two custom exceptions:

type
ENotCaching = class(Exception);
ENoPendingEdits = class(Exception);

Determining a record’s update status. Each record’s status
is displayed in Figure 3. This was done using a calculated
field and the DataSet’s UpdateStatus method. Recall that
an active DataSet points to a single record. To determine
the record’s cached update status, use the DataSet’s
UpdateStatus method; it returns a TUpdateStatus value.
TUpdateStatus is declared in the DB unit:

type
TUpdateStatus = (usUnmodified, usModified,

usInserted, usDeleted);
42 June 1997 Delphi Informant
Delphi raises an exception if you call UpdateStatus without
being in Cached Updates mode.

Table1’s OnCalcFields event handler demonstrates
UpdateStatus in action (see Figure 4). As you can see, Table1
includes a calculated field named UpdateStatus. To avoid
generating exceptions, this event handler calls UpdateStatus
only if Table1 is caching updates.

Displaying old values of modified records. There may be
times when you want to know the previous value of an edited
field in a cached record. Fortunately, this value is readily avail-
able in the OldValue property of TField components. OldValue
is a Variant, so it can hold old data of any type.

The CACHE3 project contains a simple demonstration of
OldValue in the OnColEnter event handler of the DBGrid on
Form2. Each time the user moves to a new field, OnColEnter
determines if the current record has been modified. If so, the

Figure 6: The OldValue and NewValue are not compared for a
field if its SelectedIndex is 0.

procedure TForm2.DBGrid1ColEnter(Sender: TObject);

begin
if (Form1.Table1.UpdateStatus in [usModified]) and

(DBGrid1.SelectedIndex <> 0) and
(DBGrid1.SelectedField.OldValue <>

DBGrid1.SelectedField.NewValue) then
StatusBar1.SimpleText :=

'Old value: ' + DBGrid1.SelectedField.OldValue;

else
StatusBar1.SimpleText := '';

end;

DBNAVIGATOR

Figure 5: When the user moves to an edited field, the previous
value of that field is displayed in the form’s status bar.
OldValue and NewValue properties of the field (identified using
the DBGrid’s SelectedField property) are compared. If they do
not match, the field has been edited, and the old value displays
in Form2’s status bar (see Figure 5).

As in Figure 6, OldValue and NewValue are not compared for a
field if its SelectedIndex property is 0. This index is associated
with the first field displayed in the DBGrid — UpdateStatus,
the calculated field. Because it cannot be edited, the
UpdateStatus field cannot have an old value.

Reverting individual records. Another powerful capability
provided by cached updates is that they allow individual
records stored in the cache to be selectively removed from the
cache. This feature even permits a “deleted” record to be
restored, provided the update hasn’t yet been applied. This
feature is possible through the DataSet method, RevertRecord.
When RevertRecord is called, the current record to which the
DataSet points is restored to its pre-edited value. There’s no
penalty for calling RevertRecord when the current record’s
UpdateStatus is usUnmodified. Here’s RevertRecord in action:

procedure TForm2.Button1Click(Sender: TObject);

begin
Form1.Table1.RevertRecord;

end;

This event handler is associated with the OnClick event prop-
erty of the Undo Edit button on Form2 of the CACHE3 pro-
ject. When you click Undo Edit, the current record displayed
in Form2’s DBGrid is restored to its pre-edited value. Because
the UpdateRecordTypes property of Table1 doesn’t include
rtUnmodified when Form2 is open, the reverted record is
removed from view.
43 June 1997 Delphi Informant
Advanced Cached Updates
Cached updates are particularly easy to deal with when you’re
caching the updates to a single table. The same is true when
caching updates to an editable query result. In some situa-
tions, however, cached updates can become more complex.
These include simultaneously caching to two or more interre-
lated tables, caching updates to a read-only query, or when
you want to programmatically control the updates to each
record in the cache.

Caching two or more tables simultaneously. Typically, caching
updates to two or more tables at the same time is only slightly
more complicated than caching a single table. Usually, the pri-
mary issue of concern is knowing to which table you’ll apply
the updates first.

Most multi-table caching involves one-to-many relation-
ships. For example, one table may contain invoice records,
and another, the line items for that invoice. Furthermore,
these tables will be linked by way of the detail table’s
MasterSource and MasterFields properties (in this example,
the line items table would be the detail table).

To cache these tables simultaneously, set their
CachedUpdates properties to True. The trick comes when
you need to apply these changes. First, you must apply the
updates within a transaction. Thus, if the updates to one
table cannot be applied, any updates already applied to the
other table can be rolled back. Then, you must apply the
updates to the master table first.

Because you must control the order in which the updates are
applied, and do so from within a transaction, you’ll find it
easier to apply the updates to these multiple tables using a
Database component. Let’s assume two Table components,
Master and Detail, employ a Database named Database1.
Here’s how to apply cached updates to these tables:

Database1.ApplyUpdates([Master,Detail]);

Although this statement is simple, the tables’ order in the
array passed to ApplyUpdates is critical. It’s essential the
Master table be passed as the first element of the array, the
Detail table as the second. This same technique can easily be
expanded to three or more tables — even to those where a
one-to-many-to-many relationship exists. In these situations,
as in the two-table example, the order in which the updates
are applied is important. This can be controlled by manipu-
lating the order in which the DataSets are passed in the array
parameter of ApplyUpdates.

In some situations, however, this technique alone cannot
work. Specifically, if two or more of the tables being
cached are dependent upon each other (either through ref-
erential integrity definitions or other constraints defined
on the server), it may be necessary to code the application
of the updates one record at a time. This is achieved using
the OnUpdateRecord event handler for each table.

DBNAVIGATOR
Controlling the update process. Unless you have taken
explicit steps to alter the default behavior, calling
ApplyUpdates causes the cached edits to be applied by code
internal to the DataSet object. While this works well in a
wide variety of situations, there may be times when you
must provide customized update behaviors. This is neces-
sary when you apply updates to read-only DataSets, as
well as perform special processing of individual records as
they’re being updated.

Two techniques are available for this purpose. The first uses
the UpdateSQL component, and the second involves the
DataSet event properties OnUpdateRecord and
OnUpdateError. Under some circumstances, you must use
both. We’ll concentrate on the details of the first technique.

The UpdateSQL Component
The UpdateSQL component is an object that can be associ-
ated with a DataSet, and is used to store SQL query state-
ments that define how the cached updates are applied. In all,
you can associate three query strings with a single
UpdateSQL component. Each query is then stored in three
TString properties named DeleteSQL, InsertSQL, and
ModifySQL. They are used to apply deletions, insertions, and
modifications, respectively.

The primary use of the UpdateSQL component, when used
without update-related event handlers, is to provide updates
to read-only query result sets, i.e. update records modified in
a non-live query. At first, this sounds ridiculous ¾ that a
read-only result set can be modified. It can, however, when
the read-only result is placed into Cached Updates mode,
and an UpdateSQL component has been assigned to the
UpdateObject property of the Query.

For the most part, the UpdateSQL component applies to
two types of read-only queries:
1) SELECT queries that aggregate data

across records using the DISTINCT
keyword, and

2) SELECT queries that join records
from two or more tables.

The first type can be handled using a single UpdateSQL
component. The second type requires more than one
UpdateSQL component, as well as the control provided by
the OnUpdateRecord DataSet event handler (we’ll cover
this in Part III; see end of article for details).

Consider the following, albeit contrived, scenario: You write
a database for an order-entry system. Into this system, a large
number of data entry people simultaneously enter customer
orders received by phone. Due to circumstances beyond your
control, validating the names in the City field at data entry
time is not possible. To handle the inevitable misspellings in
the City field, you provide a form that allows the database
administrator (DBA) to review all the entered city names,
and make any necessary corrections.
44 June 1997 Delphi Informant
Because you don’t want the DBA to have to view every
record, you use a SELECT DISTINCT query to display
only unique city names. (This result set, by the way, is read-
only.) Using cached updates and the UpdateSQL compo-
nent, the DBA can then review these names and make any
necessary changes. Let’s say the DBA finds an entry for
“New Yorrk”. You want to allow the DBA to change that
entry to the correct value, “New York”. It doesn’t matter how
many instances of “New Yorrk” are in the database — you
want the DBA to change only a single record. This situation
is ideal for the UpdateSQL component.

Let’s say you apply a cached update that uses an
UpdateSQL component. The DataSet to which the
updates are being applied executes the queries associated
with the UpdateSQL component, corresponding to the
various changes made to the read-only result set. For
example, if only insertions were made, only the
UpdateSQL InsertSQL query is executed. If deletions are
also performed, the InsertSQL and DeleteSQL queries are
executed. Note that these queries are executed once per
record. For example, if five insertions are made, the
InsertSQL query is executed five times.

The queries associated with the UpdateSQL component
use special parameters to perform their duties. As you
may recall, a parameter in a query is defined by preced-
ing the parameter name with a colon (:). Furthermore,
the UpdateSQL component automatically defines two
parameters for every field involved in the query. Of these
two parameters, one has the same name as the field, and
the other has a name using the form OLD_ fieldname.
For example, referring to the preceding scenario, the
City field would have two corresponding parameters,
CITY and OLD_CITY. The parameter with the same
name as the field represents the field’s current value; the
parameter beginning with OLD_ represents the field’s
original value.

As a result, the ModifySQL query associated with the
UpdateSQL object used by this scenario would contain
this query:

UPDATE ORDER

SET CITY = :CITY

WHERE CITY = :OLD_CITY

When executed by applying updates to the SELECT
DISTINCT query, this ModifySQL query assigns to the
City field of the ORDER table the current value of the
City field in the result set, but only for those records where
the original value of the City field in the record being
updated matches the City field in the ORDER table.

If you were to allow the DBA to delete all records associated
with a given city, the DeleteSQL query would resemble:

DELETE FROM ORDER

WHERE CITY = :OLD_CITY

DBNAVIGATOR

Figure 9: Use the UpdateSQL Editor to simplify the process of cre-
ating update queries for your UpdateSQL components.
Likewise, if you permit the
DBA to insert records into
the result set, the correspond-
ing InsertSQL query would
look like:

INSERT INTO CUSTOMER (CITY)

VALUES (:CITY)

Granted, to be consistent with
the preceding scenario, it’s
highly unlikely you would
permit either deletions or
insertions. Consequently, you
would assign only an update
query to the ModifySQL prop-
erty of the UpdateSQL com-
ponent, and leave the
DeleteSQL and InsertSQL
properties blank.

The CACHE4 project demonstrates the UpdateSQL com-
ponent used in a task similar to the one described here
(see Figure 7). This project contains a Query object that
executes this SQL statement:

SELECT DISTINCT CUSTOMER.CITY

FROM CUSTOMER

Because this query contains the DISTINCT keyword, the
result set is not editable. However, if you click the Edit City

Names button, this OnClick event handler is executed,
placing the query into Cached Updates mode:

procedure TForm1.Button1Click(Sender: TObject);

begin
Query1.CachedUpdates := True;

Button1.Enabled := False;

Button2.Enabled := True;

end;

The query result then becomes editable. To apply changes
made to the query result, it’s necessary to apply the cached
updates. This is accomplished by clicking the Apply Edited

Names button (Figure 8 is its OnClick event). Note that to
refresh the query’s view, it had to be re-executed.

In this project, the real work of applying the cached
updates is performed by an UpdateSQL component
named UpdateSQL1, which is assigned to the query’s

Figure 7: The CACHE4 project
demonstrates the use of an
UpdateSQL component to
update changes made to a
read-only query result set.
45 June 1997 Delphi Informant

Figure 8: The OnClick event for the Apply Edited Names button.

procedure TForm1.Button2Click(Sender: TObject);

begin
Query1.ApplyUpdates;

Query1.CommitUpdates;

Query1.CachedUpdates := False;

Query1.Close;

Query1.Open;

Button2.Enabled := False;

Button1.Enabled := True;

end;
UpdateObject property. UpdateSQL1 has only a single
query associated with it. This query, assigned to the
ModifySQL property, contains these statements:

UPDATE CUSTOMER

SET CITY = :CITY

WHERE CITY = :OLD_CITY

Using the UpdateSQL Editor
The update queries you assign to the various SQL properties
of the UpdateSQL component are not difficult to write.
However, they can be cumbersome when a large number of
fields are involved. Fortunately, the UpdateSQL component
sports a powerful component editor, the UpdateSQL Editor
(see Figure 9).

The UpdateSQL Editor is a multi-page dialog box. The
first page, Options, permits you to define the query’s key
fields, as well as fields that must be updated. Using the
controls on the left side of this page, you can list the vari-
ous tables involved in a query, obtain the tables’ fields,
and even select the primary keys. After highlighting the
key and update fields in the Key Fields and Update Fields

list boxes, click the Generate SQL button to generate the
SQL you can use to update the table being queried.

Figure 10 shows the SQL page of the UpdateSQL Editor.
It displays the three SQL statements generated by clicking
the Generate SQL button on the first page. To switch
between the various SQL statements, use the radio buttons
at the top of this form. For example, to prevent a particular
type of update — deletions for instance — simply select
the Delete radio button, then delete the displayed query.

When you click OK, the generated SQL statements are assigned
to the corresponding TString properties of the UpdateSQL
component for which you invoked this component editor.

Note, however, that you don’t need to use the UpdateSQL
Editor to generate your update queries. You can write
them manually using the String list editor associated with
each SQL statement.

Figure 10: The SQL page of the UpdateSQL Editor permits you
to view and edit the SQL generated by clicking the Generate
SQL button on the Options page. You can also manually enter
your SQL statements on this page.

DBNAVIGATOR
Generally, you’ll find the UpdateSQL Editor helpful and
easy to use. For additional information on using the
UpdateSQL Editor, display it, then click Help, or use the
index in Delphi’s online Help.

Conclusion
We’ve seen here that cached updates can increase the user
interface options you provide. Furthermore, using an
UpdateSQL component, you can allow your users to edit
read-only DataSets.

Next month’s “DBNavigator” column completes this series by
considering how to use the cached updates-related event han-
dlers, OnUpdateRecord and OnUpdateError. We’ll also cover
using multiple UpdateSQL components with the
OnUpdateRecord event handler to apply updates to query
results that include records from two or more tables. D

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JUN\DI9706CJ.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including
Delphi In Depth [Osborne/McGraw-Hill, 1996]. Cary is also a Contributing Editor
of Delphi Informant, as well as a member of the Delphi Advisory Board for the
1997 Borland Developers Conference. For information concerning Jensen Data
Systems’ Delphi consulting and training services, visit the Jensen Data Systems
Web site at http://gramercy.ios.com/~jdsi. You can also reach Jensen Data
Systems at (281) 359-3311, or via e-mail at cjensen@compuserve.com.
46 June 1997 Delphi Informant

47 June 1997 Delphi Informant

New & Used

By Tim Boyd

STDynArray 1.0
Bringing the Power of Dynamic Arrays to Delphi

Figure
As an old Paradox programmer, I’ve been known to tell anyone who will lis-
ten that if I could magically transport only one of its programming con-

structs into Object Pascal, it would be the DynArray. Now, at last, it’s here!
Are you tired of writing lengthy routines to
handle relatively simple array functions?
Wouldn’t it be nice to directly address an array
entry using an index consisting of the string
value that uniquely identifies it? Have you
ever longed for the ability to copy all like-
named fields from one table to another with
only two lines of code? And wouldn’t it be
great if those two lines also handled any type-
casting conversions needed between different
data types? If you answered “Yes” to any of
these questions, STDynArray may be for you.
1: The Order Counts form.
What Is a Dynamic Array?
The term dynamic array, as used in this arti-
cle, refers to an array that can be dynamically
resized, and is indexed by a string rather than
an ordinal. Thanks to STDynArray, from
Software Technology, the flexibility, power,
and simplicity of dynamic arrays is now
available to Delphi programmers. These fea-
tures are provided through the clever use of
Variant arrays behind the scenes, so
STDynArray is strictly a 32-bit tool.

Using Dynamic Arrays
STDynArray can be used as a component or
class. The easiest way to demonstrate its
capabilities is by example. The source code
for a test program that exercises each of its
features is available for download — the test
program Order Counts is included, along
with a trial version of STDynArray that
requires the presence of the IDE to run (see
the end of the article for details). To install
them, simply follow the readme.txt file
instructions in each.

The Order Counts form contains two tables
and several buttons (see Figure 1). The
Orders table is one of the standard Delphi
DBDEMOS files, and the Order Copy table
is similar in format, but has differences that
will be explained later. Both tables specify
the dbOrders Database component in their
DatabaseName property to take advantage of
the “local alias” capability of Database; so
there’s no need to define an alias for the
directory in which the tables are installed.

New & Used

Figure 2:
The daCount
properties.
We’ll first experiment with a dynamic array defined as a
component. The array, named daCount, will be used to
accumulate daily sales counts indexed by the string value of
the corresponding sale date. Its properties are shown in
Figure 2. The CurrAllocSize property defines the initial
number of array entries (37) for which memory is to be
allocated. Because this is a dynamic array, however, it’s possi-
ble for it to grow beyond the initial allocation; so the
AllocGrowthRate property is used to control the reallocation
process. Its value is 10, so a factor of 10 will be applied to
allocate more memory when the current size is exceeded.

Therefore, if the initial size of 37 is exceeded, the next
memory allocation will be for 370 entries. This happens
entirely behind the scenes, so the programmer’s main con-
cern is to allocate an initial size that’s reasonable for the sit-
uation at hand. The DynArrayOrder property defines the
sequence in which the array indexes are to be maintained.
Possible values are DAOAlphaOrder, for alphabetical
sequence, and DAOCreationOrder, to preserve the sequence
in which entries are added to the array. The daCount array
will be in creation order. The DynArrayType property identi-
fies the type of data to be stored in the array, and supports
many data types, including Variant. The daCount array will
store Integer values.

When determining the size of a STDynArray, it’s critical to
ensure the CurrAllocSize and AllocGrowthRate properties
work together to limit the number of times that memory
must be reallocated. Memory reallocation involves significant
overhead and should be kept to a minimum to prevent
unnecessary delays. Because huge Variant arrays also have a
detrimental impact on performance, it’s important to have
controls in place to ensure they don’t become too large.
When working with a large array, consider using the
DAOAlphaOrder option to take advantage of its binary index
search capability.

The design strategy for the Order Counts program is based
on the assumption that the typical request will be for no
more than one month, but that it may occasionally be neces-
sary to see counts for up to a year. Therefore, the initial allo-
cation of 37 will handle the typical one-month request. If a
request is made for more than 37 days, the growth factor of
10 will be applied to bring the size to 370. Because the pro-
48 June 1997 Delphi Informant
gram limits user requests to allow no more than 366 days, it
will never be necessary for the array to be expanded more
than once. This ensures that the array can’t become large
enough to adversely impact performance; so itchy user fin-
gers won’t be tempted to press the computer’s reset button.

Once defined, the daCount array is ready to be loaded,
which is done by pressing the Select Dates button. The
btnSelectDatesClick procedure prompts the user to enter start
and end dates for the date range desired, empties the array,
resets the CurrAllocSize to 37 (because the Empty method
defaults the size to 10), initializes an array entry for each
date within the specified range — using the string value of
the date as the index — then spins through the Orders
records to count each sale within the specified date range.

The code that does the accumulation saves the sales date
as a string variable, then uses that variable as an index to
increment that date’s count:

sDate := tblOrdersSaleDate.AsString;

daCount[sDate] := daCount[sDate] + 1;

When the procedure
finishes, it prompts the
user to press the View

Counts button to see
the results. The
btnViewCountsClick
procedure invokes the
array’s View method,
which displays the con-
tents of the array in a
resizable dialog box
(see Figure 3). In this
example, the date range
was 7/1/88 to 7/31/88.

The Show One Dt but-
ton (again, see Figure 1)
is used to view the
count for a specific date.
It executes code that
prompts the user for the desired date, then displays the count
for that date in a small dialog box. The following code demon-
strates how the Contains method is used to determine whether
the string value of the date is present as an index in the array:

if daCount.Contains(sDate) then
ShowMessage('Count for ' + sDate + ' is: ' +

IntToStr(daCount[sDate]))

else
ShowMessage('Date ' + sDate + ' is not in the array!');

The Update Array button invokes an Update function that
uses a resizable dialog box (see Figure 4) to allow the user
to change the contents of one or more array entries. If the
user elects not to save the results, pressing the Cancel but-
ton discards any pending changes. Because the Update
function doesn’t permit Index values to be changed, there is

Figure 3: The results of pressing the
View Counts button.

New & Used

Figure 4:
The Update
Array dia-
log box.
no need for extra programming to handle potential error
situations such as duplicate entries or indexes outside the
range of the original constraints. The syntax of the Update
function is straightforward. It accepts a dialog box title,
and headings for the index and value columns, and returns
a Boolean value. The code for the Update Array button is:

if daCount.Update('Update Array','Sales Date',

'Number of Sales') then
ShowMessage('The array has been updated.')

else
ShowMessage('The array was not updated.');

The purpose of the Remove Zeros button is to remove all
array entries with zero counts. It demonstrates a technique
for controlling a loop through a dynamic array when the
number of entries is decreasing:

i := 0;

{ Use the array's Size property to limit the loop. }
while i < daCount.Size do

if daCount.Value[i] = 0 then
daCount.RemoveItem(daCount.Index[i])

else
{ Increment counter if latest entry wasn’t deleted. }
inc(i);

In the third line, the Value property is used to compare
the value of the current array entry with zero. The next
line uses the RemoveItem method to delete the current
zero-value array entry that is uniquely identified with the
string value of the date contained in the Index property.

Any action that causes the number of array entries to
change will result in the daCount.Size property being
adjusted accordingly; therefore the Size property is used to
limit the number of iterations within the while loop. In
the last line, the i counter used to keep track of the cur-
rent array item is incremented only if the latest entry was
not deleted. As you can see, it only takes a few lines of
code to serially navigate a dynamic array.

An Easy Way to Copy Records between Tables
Two important bonus features of STDynArray are its extreme-
ly powerful CopyToDataset and CopyFromDataset methods.
49 June 1997 Delphi Informant
These two commands make it possible to copy all like-named
fields from one table to another with only two lines of code,
handling any necessary typecasting automatically.

In our example, the btnCopyRecordClick procedure uses a
dynamic array (daTemp) to copy the contents of the current
Orders record to the OrdCopy table. Because the array is local
to the procedure, it isn’t defined as a component. Instead, the
program uses the STDynArray class to instantiate it, which
means it must first be defined as a variable of type STDynArray:

daTemp: STDynArray;

It’s then instantiated as follows:

daTemp := STDynArray.Create(varVariant, DAOAlphaOrder);

A database table contains fields of different types; so the daTemp
array’s data type is set to Variant. The sequence of the array is set
to DAOAlphaOrder, to cause the index to be maintained alpha-
betically by field name. This is done for the purpose of demon-
stration — in production use of CopyFromDataSet, it’s normal to
use DAOCreationOrder to store array entries in field-order
sequence. The point is that the array will perform correctly
regardless of the sequence of the field values within it. Now let’s
get to the interesting stuff. The command:

daTemp.CopyFromDataSet(tblOrders);

empties the daTemp array, then copies the contents of
every field from the current Orders record to it, using
each field name as the index to its entry. There’s no need
to set the CurrAllocSize and AllocGrowthRate properties,
because CopyFromDataSet automatically sets the array size
to the number of fields in the record, and the growth rate
was initialized with a default value of 2 when the array
was created. The statement:

daTemp.CopyToDataSet(tblOrdCopy);

copies the contents of the array into the OrdCopy table.
Figure 5 shows the result of pressing the Copy Record button
three times in succession. STDynArray accomplishes this by
matching array indexes with the field names in the receiving
table. For each match, the method leverages Variant behav-
ior to determine if the data types are compatible. If so, the
contents are copied into the field, using typecasting when
necessary. If matching fields with incompatible types are pre-
sent, all compatible fields are copied, a single exception is
raised for the fields that can’t be copied, and the user has the
option to manually post the new record. Powerful stuff!

To verify that these methods work as stated, check out two
things while experimenting with the form:
1) The receiving OrdCopy table contains a Diff field not

present in the sending Orders table. Therefore it will
remain untouched after the insertion.

2) The sending SaleDate field is a TDateTimeField, while
the receiving SaleDate is a TStringField. The values are
successfully translated into strings.

New & Used

Figure 5: The copy results.

Tim Boyd, an independent consultant, provides Rapid Application Development
services to companies in Southern California. He can be reached via the Internet
at timboyd@bigfoot.com.
Because the program takes responsibility for creating
daTemp as an instance of the STDynArray class, it’s impor-
tant to free the array within the finally clause of a try con-
struct to prevent a memory leak. This is done in the last
few lines of the btnCopyRecordClick procedure.
50 June 1997 Delphi Informant
Conclusion
STDynArray is a useful prod-
uct, and its Help file makes it
easy to quickly get up to
speed. Having been involved
in its Beta testing, I am satis-
fied that it contains no glitch-
es. The only caveats are to use
its properties to prevent mul-
tiple memory reallocations,
limit the maximum allowable
size, take advantage of the
DAOAlphaOrder option’s bina-
ry search capability when pos-
sible, and test large arrays in
the environment in which
they will be used, to ensure
acceptable performance.

I rank STDynArray as a must-
have. Your programming tool
kit isn’t complete without it. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JUN\DI9706TB.

STDynArray brings Paradox-style
DynArray to Delphi. A DynArray is an
array that uses strings as indexes and
has no declared maximum size as it
is limited by available memory.
STDynArray provides
CopyFromDataSet and CopyToDataSet
methods that permit an entire record
in a database to be copied to and
from STDynArrays.

Software Technology
1979 Grace Ave., Suite B-8
Los Angeles, CA 90068

Phone: (213) 969-0200
Fax: (213) 969-0555
E-Mail: info@software-tech.com
Web Site: http://www.software-
tech.com
Price: Without source code, US$35;
with source code, US$70.
Demonstration versions can be down-
loaded from Software Technology’s
Web site.

51 June 1997 Delphi Informant

New & Used

By Alan C. Moore, Ph.D.

Async Professional for Delphi
A Complete Communications Library

Figure 1: A partial list o
strings) covered in APD’s
S etting up asynchronous serial communications is not a trivial task, even
with all of Windows’ support features. A library like TurboPower

Software’s Async Professional for Delphi (APD) greatly facilitates adding com-
munications capabilities to your programs. Although there are no Internet-
or Web-specific components or methods, all the other major areas are cov-
ered, including modem components, fax components, terminal-emulation
components, and file-transfer protocols. It also allows access to low-level
functions and classes. The library includes full source code, many example
programs, and an excellent manual, all of which we’ll examine.
Working with Modems
Async Professional for Delphi offers two
ways of working with modems. For
Windows 3.x or Windows NT 3.51, you
would likely use the TApdModem compo-
nent and its related dialer components. For
Windows 95 or Windows NT 4.0, APD’s
support for the Telephony Application
Programming Interface (TAPI) is quite help-
ful. Let’s take a brief look at each approach.

APD provides several components for setting
up and using modems: a modem database
component (TApdModemDBase), a general-
purpose modem component (TApdModem),
and a phone-dialer component
f the many modems (and corresponding
 database.
(TApdModemDialer). The TApdModemDBase
component provides an interface to APD’s
modem database, AWModem.INI. With it,
you can manipulate the records in the database
(read, write, modify, delete), or load them all
into a TString class. Each database entry con-
tains a name field (modem name) that serves as
an index, five command fields (for initializa-
tion, dialing, terminating dial, answering, and
hanging up), and eight response strings for var-
ious situations (OkMsg, ConnectMsg, BusyMsg,
VoiceMsg, and so on). Figure 1, taken from the
example project ExModDb, shows a partial list
of the modems in the database, and part of
ConfigCmd, the concatenated string that con-
tains data on all the fields. The entire database
entry goes like this:

[Fastcomm FDX 2424 (MNP 5)]

InitCmd=ATZ^M

DialCmd=ATDT

DialTerm=^M

DialCancel=^M

HangupCmd=DTR

ConfigCmd=AT&F^M|ATE1Q0M1X4V1S7=

60^M|AT&B1&C1&D2&G0&H1&I1&M6&W^M

AnswerCmd=ATA^M

OkMsg=OK

ConnectMsg=CONNECT

BusyMsg=BUSY

VoiceMsg=NO ANSWER

NoCarrierMsg=NO CARRIER

NoDialToneMsg=NO DIAL

RingMsg=RING

LockDTE=TRUE

DefaultBaud=9600

New & Used

Figure 2: APD’s extensive modem database can be modified, by
means of this dialog box.
A more extensive demonstration project, ModDemo, pro-
vides an interface for adding, modifying, and deleting
records in the database. Figure 2 shows the dialog box for
adding a new modem to the database.

While the TApdModemDBase component provides the
basic information about a modem, the TApdModem com-
ponent provides the properties, events, methods, and
exceptions needed to actually use the modem. Many of
these (such as the property OkMsg, the event
OnModemBusy, and the method Hangup) have an obvious
relationship to one or more fields in the database. One
run-time property in particular, ModemInfo of type
TModemInfo (the same database record discussed previous-
ly), provides a convenient means for initializing all of
TApdModem’s settings with one assignment statement.

TAPI, which ships with Windows 95 and is available for other
versions of Windows, provides a link between the Windows
environment and telephone hardware. Like plug-and-play,
TAPI’s approach is to allow the operating system (through vari-
ous DLLs) to handle many standard software/hardware inter-
face issues. In this instance, TAPI provides two important
advantages for communications programmers:

modems are usually set up automatically (the user may
need to select a particular one); and
applications can share COM ports.

APD provides several components you can use to access
TAPI in your applications. TApdTapiDevice provides the
basic TAPI functions of dialing, answering, and configur-
ing the modem. The TApdTapiStatus component imple-
ments a display of status information on TAPI’s various
communications events. Finally, the TApdTapiLog class
provides a means of automatically logging TAPI events.

TAPI does have a few additional requirements and limita-
tions. It’s not automatically available for every version of
Windows. While you should consider supporting it in
Windows 95-specific applications, you should probably
avoid it in Windows 3.x applications. Also, it doesn’t give
52 June 1997 Delphi Informant
you the same level of control inherent in working with
TApdModem. Nevertheless, TAPI will no doubt gain impor-
tance as it becomes standard in 32-bit Windows implemen-
tations (including Windows NT 4.0).

A Terminal Case
The APD library provides several terminal-emulation
components. The main one, TApdTerminal, can be used
with or without emulation. Its various properties make
the following capabilities available:

retrieving characters from the serial port;
sending keystrokes through the serial port;
translating escape codes into the colors and formatting
they represent;
storing incoming data in a buffer (to facilitate
scrolling); and
scrolling and resizing.

A non-visual keyboard emulation component,
TApdKeyboardEmulator, works with the TApdTerminal com-
ponent. Finally, a TApdBPTerminal component provides sup-
port for showing data from CompuServe B+ file transfers. A
TApdCustomTerminal class and a TApdKeyboardEmulator
class (in which none of the properties are published) are pro-
vided for those who need to derive terminal or keyboard-
emulation classes.

A Matter of Protocol
File transfer protocols are nearly as old as modem commu-
nications. No communication library would be complete
without support for the major file transfer protocols. APD
supports them all: ASCII, B+, Kermit, Zmodem, and vari-
ous forms of Xmodem and Ymodem. The main compo-
nent in this group is TApdProtocol, which includes proper-
ties and methods that apply to all the protocols (such as
ComPort and CancelProtocol), along with those that are
protocol-specific (such as KermitRepeatPrefix and
ZmodemRecover).

Of course, a lot can go wrong during a file transfer. APD
provides a number of properties and methods to control
the process, as well as information and/or remedies when
an error occurs. General error-handling properties, events,
and methods include AbortNoCarrier, BlockErrors,
ProtocolError, OnProtocolError, and WriteFailAction.
Others are specific to a particular protocol. An associate
class, TApdProtocolLog, provides a means to automatically
log a file transfer. One of TApdProtocol ’s properties,
ProtocolLog, creates an instance of TApdProtocolLog to keep
track of the main component’s file transfer activities.
Several of TApdProtocol ’s other events and properties also
support this tracking, including OnProtocolLog,
BytesRemaining, and BytesTransferred.

Just the Fax, Please
With the introduction of fax modems several years ago,
support for sending and receiving faxes has become an
important feature of asynchronous serial communications.

Figure 3: TApdFaxConverter converts ASCII, .BMP, .PCX, and
other common file formats to compressed (.APF) form.

New & Used
As with the other major support features of APD, the
library supports a host of facsimile sending, receiving, and
converting capabilities. Before a facsimile document can
be sent via the fax modem, it needs to be converted to a
compressed bitmap image. APD provides the
TApdFaxConverter component (see Figure 3) to convert
some of the more common file formats (ASCII, .BMP,
.PCX, .DCX, and .TIF) to compressed (.APF) form. It
also provides a corresponding component,
TApdFaxUnpacker, to convert received .APF files to the
formats previously mentioned.

What about actually sending or receiving a fax? Through its
TApdSendFax and TApdReceiveFax components, APD sup-
ports sending and receiving facsimile documents on Class 1,
Class 2, and Class 2.0 fax modems; any of these can commu-
nicate with any other Group 3 fax device. Both the sending
and receiving components are derived from TApdAbstractFax,
which defines the many shared properties and methods.

In addition to these basic fax components, APD provides
printing, viewing, and status components. The printer
component, TApdFaxPrinter, provides services for sending
a fax document to a Windows printer. With it you can
add headers and footers, and scale the document to fit the
specified paper size.

The TApdFaxViewer component provides the means for
you to view a received fax or .APF file. It includes scaling
capabilities, white-space compression, drag-and-drop sup-
port, and the ability to copy all or part of the fax to the
Windows Clipboard.

The TApdFaxStatus component (which is included as a
property of both TApdSendFax and TApdReceiveFax)
enables you to show progress and other information for
faxes being sent or received.
53 June 1997 Delphi Informant
Another small class, TApdFaxPrinterStatus, implements a
standard printer-status display. Finally, APD provides a
Fax Printer Driver. When compiled and installed, this dri-
ver allows you to generate files in .APF format as easily as
printing to a Windows printer; in fact, it works the same
way. The printer can also be used to capture images from
a Web browser by selecting Print from the File menu, and
selecting APF Fax as the printer.

Low-Level Foundation
APD provides two kinds of low-level support for its main
components. Two general (not communications-specific)
groups of low-level utilities are used by some of the com-
munications classes. Also, the TApdComPort component is
vital to the operation of every communications compo-
nent we’ve discussed. APD provides full documentation
and source code for all these classes.

The first group of low-level utilities consists of timer func-
tions that allow you to wait for a specified period of time,
convert between seconds and milliseconds, and monitor
elapsed time.

The second group includes three functions for
numeric/string conversions. The final low-level utility is a
component, TApdIniDBase (with a lower-level custom
class), that provides support for maintaining a Windows
.INI file. The latter is used by the TApdModemDBase com-
ponent discussed previously; however, you can derive your
own classes to manage other types of .INI files. The first
two groups of utilities are also useful in other contexts.

TApdComPort is the most important and basic component
in the entire library. It controls the serial port hardware
and all its input/output. It includes some 50 properties
(many of which are run-time only), 11 events, nearly 100
new methods, and a host of exceptions. Particularly note-
worthy are the built-in monitoring, error-checking, and
debugging features.

Power and Flexibility
APD’s built-in support for debugging is another powerful
and useful feature. The main DLL (if you choose to use
DLLs instead of direct linking), which contains the basic
communications tools (COM port support, modem sup-
port, etc.), comes in two versions: APW.DLL and
APWD.DLL. The latter adds special debugging tools for
tracing and logging. Tracing saves all sent or received charac-
ters in a circular queue of specified size. Logging goes a bit
further. As one of the properties of the TApdComPort com-
ponent, it supports most of the other components in this
library. When the property is set to True, APD logs all the
data that goes through the COM port, and can optionally
save it to disk. Because it includes a date/time stamp, you
can see the exact order in which data is sent or received.

Speaking of power and flexibility, you can link the
library’s components directly to your executable program,

New & Used

Figure 6: Scheduling faxes to be sent later.

Figure 7: Configuring the COM port.

Figure 5: Faxing a file to a selected phone number.

Figure 4: The main screen of the feature-rich example program.
or you can access them from the DLLs included in APD.
Each approach has advantages and disadvantages. With a
single .EXE file, all your code is in one place; however,
that file is considerably larger. With APD’s .DLLs, several
programs can access the same APD functions from a sin-
gle .DLL; however, you need to distribute the APD .DLLs
with your application(s).

Just as in Delphi’s Visual Component Library (VCL), all
the major components have custom classes in which none
of the properties are published, and all of APD’s major
components have custom classes. So we can hide any prop-
erty we need to in our derived classes. Full source code is
provided for all components, supporting classes, and exam-
ple programs, so we can see exactly how everything works.

Comprehensive Documentation and Support
TurboPower is famous in the software development indus-
try for its first-rate manuals, excellent technical support,
and its policy of providing full source code. APD is no
exception. The manual does much more than simply
describe the included components — it provides an excel-
lent introduction to asynchronous communications pro-
gramming. Many of the components have code fragments
included; all have accompanying example programs. In
addition, a massive example program, TCOM.DPR,
demonstrates just about every feature of the library
through some 30 dialog boxes.

The main screen, with its feature-rich menu and toolbar,
indicates the extent of this example program (see Figure 4).
Under the main menu bar are 27 submenu items, some of
which include further items, or lead to one of the many
dialog boxes. Nearly 30 new support files manage the lat-
ter; this doesn’t even include the APD component units.

When Fax | Send is selected, the dialog box in Figure 5
appears, allowing you to select a phone number and a file
to send. You can also schedule faxes to be sent later, as
shown in Figure 6. And of course, you would expect to be
able to configure the COM port. The dialog box shown in
Figure 7 accomplishes this task. Keep in mind that these
few examples barely scratch the surface in demonstrating
the scope of the “example” program.

The Companion Program
To get an idea of what you can do with this library, run
this article’s downloadable companion program (see the
end of this article for details). You’ll need either the full
version of APD, or the trial version downloadable from
TurboPower.

Conclusion
When I began working with this product, I didn’t have
much experience programming asynchronous communica-
tions. Now, having worked through the sample programs,
I feel I could tackle a wide range of communications
problems. If you’re a novice in this area, don’t be shy;
54 June 1997 Delphi Informant

Async Professional for Delphi is a complete
library of components for handling the
major aspects of asynchronous communica-
tions — including configuring and using
modems, terminal and keyboard emula-
tion, file transfer protocols, and sending
and receiving faxes. It includes example
programs (one of which is a multi-featured
communications application), full source
code, and extensive online Help. Its user
manual is well organized, informative, and
well written. APD is perfect for both the
experienced and novice communications
programmer.

TurboPower Software Company
P.O. Box 49009
Colorado Springs, CO 80949-9009
Phone: (800) 333-4160 or
(719) 260-9136
Fax: (719) 260-7151
E-Mail: info@tpower.com
Web Site: http://www.tpower.com
Price: US$199; upgrade from APD 1.x,
US$79; from any other TurboPower Async
Professional product, US$119; from any
other TurboPower product, US$159.

New & Used
jump right in. You’ll be sur-
prised how easily you’ll be
able to get up to speed.

All of this is due, of course,
to the solid construction of
the components in this
library, and the excellent
example programs and docu-
mentation. I recommend
Async Professional for
Delphi highly to anyone
who needs to add communi-
cations capabilities to their
applications. It’s truly a
complete communications
library. ∆

The files referenced in this
article are available on the
Delphi Informant Works CD
located in
INFORM\97\JUN\DI9706AM.
55 June 1997 Delphi Informant

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he special-
izes in writing custom components and implementing multimedia capabilities in
applications, particularly sound and music. You can reach Alan on the Internet at
acmdoc@aol.com.

File | New
Directions / Commentary

Shakedown 1997
For much of the 1990s, we as software developers got comfortable with the development tool vendors
that existed: Microsoft, Borland, PowerSoft, and Symantec were among the major tool providers to

whom most programmers swore allegiance. Client/server developers, for example, tended to fall into
three distinct camps: Visual Basic, PowerBuilder, or Delphi. Innovation occurred, but mostly among only
these influential players. However, as we approach mid-1997, the dynamic nature of the Web has
unearthed this status quo and ushered in a new breed of start-up tool companies, which — so far — have
been sticking it to the traditional tool powerhouses.
Struggling at the top. Microsoft is
perhaps the one major tool provider
that, despite a rough start, has largely
been able to maintain its momentum
into the Web world. In contrast,
other dominant players such as
Borland and PowerSoft, while owning
the desktop and client/server markets,
are struggling to redefine their mis-
sions and gain momentum in this
new arena.

Microsoft is obviously going to contin-
ue to be a dominant tool vendor, both
for client/server and Web develop-
ment. Its Visual Studio is convincing,
integrating several tools, such as Visual
C++, Visual J++, and Visual InterDev,
into a single IDE. Yes, other vendors
continue to provide more innovative
tools, but Microsoft is starting to catch
up with them.

Borland could hardly be more com-
pelling than it is now in the
client/server world with the Delphi
and C++Builder duo. But its chances
of strong success in the Web market
are much less certain. Ultimately,
Borland’s best chance for prosperity
in this arena rests with JBuilder.
Although delayed several months,
JBuilder still has a chance of being a
market leader in the Java marketplace.
56 June 1997 Delphi Informant
Borland has surely been blessed in
this regard by the immaturity of Java
tools, but if Scotts Valley is not able
to deliver JBuilder soon, they could
lose out on a large piece of this pie.

Of all the traditional players,
PowerSoft seems to be having the
most trouble shedding the client/serv-
er mentality to produce innovative
tools for the Web. While it will main-
tain a level of marketshare within the
PowerBuilder community moving to
the Web, it seems unlikely PowerSoft
will ever be able to gain the mind-
share in 1997 that it was able to in
the client/server world in 1994-95.

Upstarts are coming. If the power-
houses are struggling, the same can-
not be said of several emerging tool
providers. Upstarts — such as Allaire,
Marimba, and NetDynamics — are
unencumbered by the past, and seem
intent on becoming the next market
leaders. And although not known as a
tool provider, Netscape is also an
increasingly important resource for
developers. Knowing that going toe-
to-toe with Microsoft on “platform”
requires accompanying tools,
Netscape is starting to develop prod-
ucts such as Palomar. However, the
jury is still out on whether Netscape
will ever be a legitimate threat (à la
Microsoft) to companies such as
Borland or Allaire.

Watch and see. If you are a developer,
keep a close eye on the marketplace
over the next 12 to 18 months for the
inevitable shakedown. Some well-
known ISVs will recover from their
slump and retake a leadership posi-
tion; others will fall by the wayside
and take on that dreaded “legacy”
label. Of the vast array of start-ups,
most will fail or merge, but a few will
work their way through the pack and
become the next PowerSoft, Borland,
or Symantec. Who do you think these
“wunderkinds” will be? D

— Richard Wagner

Richard Wagner is Chief Technology
Officer of Acadia Software in the Boston,
MA area, and is Contributing Editor to
Delphi Informant. He welcomes your
comments at rwagner@acadians.com.

	Table of Contents
	Delphi Tools
	Potomac Document Software Releases Component Create 2.5
	teeMach SL Launches New Charting Tool
	Nesbitt Software Sells ShareLock for Delphi Online
	Sybase Unveils Powersoft S-Designor Version 6.0
	Excel Software Introduces WinTranslator 1.0
	IntegrationWare Releases Speed Daemon Version 1.2

	Newsline
	8th Annual Borland Developers Conference Scheduled
	Informant Press to Release Hidden Paths of Delphi 3
	Borland Appoints Zack Urlocker Vice President of Product Management
	ZAC Catalogs Delphi Training Tour

	InterBase Stored Procedures
	What Is a Stored Procedure?
	Stored Procedure Basics
	Why Use Them?
	Creating Select Procedures
	Creating a Multi-Row SELECT
	A Singleton SELECT
	An INSERT
	An UPDATE
	A DELETE
	ISQL Scripts
	Calling Stored Procedures from Delphi
	Calling a Select Procedure
	Calling a Stored Procedure to Perform an INSERT, UPDATE, or DELETE Operation
	Conclusion

	InterBase Triggers and Generators
	Similarities and Differences
	Logging Changes
	Referential Integrity
	On the Server: Validating Data
	Using Generators
	Conclusion

	InterBase Event Alerters
	On the InterBase Side
	On the Delphi Side
	The Sample Application
	Phase I
	Phase II
	Registration Issues
	Conclusion

	Interfacing with COM
	Interface Construction
	Instancing
	Type Library Editor
	Client Construction
	More on COM

	New Visuals
	Splitter
	CheckListBox
	Animate
	DateTimePicker
	DBRichEdit
	Chart
	ToolBar and CoolBar
	Conclusion

	Deployment: Part II
	Extensions
	Conclusion

	Automated Excel
	Excel’s Object Hierarchy
	Fundamental Principles
	A Functional Example
	Leveraging Excel Pivot Tables from Delphi
	The Possibilities

	The Paradox Files: Part III
	The Paradox Index
	The Primary Index
	Secondary Indexes
	Maintained vs. Non-Maintained Indexes
	Table Levels and Index Naming Schemes
	A Note about Descending Indexes
	Structure of the Secondary Index Files
	How a Secondary Index Works
	Using Keys and Indexes in Delphi
	The Index Lister
	Next Time

	Cached Updates: Part II
	A Recap
	Enhanced User Interface Options
	Advanced Cached Updates
	The UpdateSQL Component
	Using the UpdateSQL Editor
	Conclusion

	STDynArray 1.0
	What Is a Dynamic Array?
	Using Dynamic Arrays
	An Easy Way to Copy Records between Tables
	Conclusion

	Async Professional for Delphi
	Working with Modems
	A Terminal Case
	A Matter of Protocol
	Just the Fax, Please
	Low-Level Foundation
	Power and Flexibility
	Comprehensive Documentation and Support
	The Companion Program
	Conclusion

	Shakedown 1997

	and:

